We investigate the existence of ground state solutions to the Dirichlet problem $-\div(|x|^\alpha\nabla u)=|u|^{2^*_\alpha-2}u$ in $\Omega$, $u=0$ on $\partial\Omega$, where $\alpha\in(0,2)$, $2^*_\alpha={2n\over n-2+\alpha}$ and $\Omega$ is a domain in $\mathbb{R}^n$. In particular we prove that a non negative ground state solution exists when the domain $\Omega$ is a cone, including the case $\Omega=\mathbb{R}^n$. Moreover, we study the case of arbitrary domains, showing how the geometry of the domain near the origin and at infinity affects the existence or non existence of ground state solutions.

On the Existence of Extremal Functions for a Weighted Sobolev Embedding with Critical Exponent

CALDIROLI, Paolo;
1999-01-01

Abstract

We investigate the existence of ground state solutions to the Dirichlet problem $-\div(|x|^\alpha\nabla u)=|u|^{2^*_\alpha-2}u$ in $\Omega$, $u=0$ on $\partial\Omega$, where $\alpha\in(0,2)$, $2^*_\alpha={2n\over n-2+\alpha}$ and $\Omega$ is a domain in $\mathbb{R}^n$. In particular we prove that a non negative ground state solution exists when the domain $\Omega$ is a cone, including the case $\Omega=\mathbb{R}^n$. Moreover, we study the case of arbitrary domains, showing how the geometry of the domain near the origin and at infinity affects the existence or non existence of ground state solutions.
1999
8
365
387
http://www.springerlink.com/content/wgncncprknj9kl7a/
degenerate elliptic equations; critical exponent; Sobolev embedding
Caldiroli P.; Musina R.
File in questo prodotto:
File Dimensione Formato  
CalcVar1999.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 183.36 kB
Formato Adobe PDF
183.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/106075
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 62
social impact