We consider Dirichlet problems of the form $-|x|^\alpha\Delta u=\lambda u+g(u)$ in $\Omega$, $u=0$ on $\partial\Omega$, where $\alpha,\lambda\in\mathbb{R}$, $g\in C(\mathbb{R})$ is a superlinear and subcritical function, and $\Omega$ is a domain in $\mathbb{R}^2$. We study the existence of positive solutions with respect to the values of the parameters $\alpha$ and $\lambda$, and according that $0\in\Omega$ or $0\in\partial\Omega$, and that $\Omega$ is an exterior domain or not.
On a class of two-dimensional singular elliptic problems
CALDIROLI, Paolo;
2001-01-01
Abstract
We consider Dirichlet problems of the form $-|x|^\alpha\Delta u=\lambda u+g(u)$ in $\Omega$, $u=0$ on $\partial\Omega$, where $\alpha,\lambda\in\mathbb{R}$, $g\in C(\mathbb{R})$ is a superlinear and subcritical function, and $\Omega$ is a domain in $\mathbb{R}^2$. We study the existence of positive solutions with respect to the values of the parameters $\alpha$ and $\lambda$, and according that $0\in\Omega$ or $0\in\partial\Omega$, and that $\Omega$ is an exterior domain or not.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Edinburgh2001.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
249.73 kB
Formato
Adobe PDF
|
249.73 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.