We consider Dirichlet problems of the form $-|x|^\alpha\Delta u=\lambda u+g(u)$ in $\Omega$, $u=0$ on $\partial\Omega$, where $\alpha,\lambda\in\mathbb{R}$, $g\in C(\mathbb{R})$ is a superlinear and subcritical function, and $\Omega$ is a domain in $\mathbb{R}^2$. We study the existence of positive solutions with respect to the values of the parameters $\alpha$ and $\lambda$, and according that $0\in\Omega$ or $0\in\partial\Omega$, and that $\Omega$ is an exterior domain or not.

On a class of two-dimensional singular elliptic problems

CALDIROLI, Paolo;
2001-01-01

Abstract

We consider Dirichlet problems of the form $-|x|^\alpha\Delta u=\lambda u+g(u)$ in $\Omega$, $u=0$ on $\partial\Omega$, where $\alpha,\lambda\in\mathbb{R}$, $g\in C(\mathbb{R})$ is a superlinear and subcritical function, and $\Omega$ is a domain in $\mathbb{R}^2$. We study the existence of positive solutions with respect to the values of the parameters $\alpha$ and $\lambda$, and according that $0\in\Omega$ or $0\in\partial\Omega$, and that $\Omega$ is an exterior domain or not.
2001
131
479
497
http://dx.doi.org/10.1017/S0308210501000221
degenerate and singular elliptic equations; Sturm-Liouville operator; variational methods; Hardy inequality
Caldiroli P.; Musina R.
File in questo prodotto:
File Dimensione Formato  
Edinburgh2001.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 249.73 kB
Formato Adobe PDF
249.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/106076
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact