We consider Dirichlet problems of the form $-|x|^\alpha\Delta u=|u|^{p-2}u$ in $\Omega$, $u=0$ on $\partial\Omega$, where $\Omega$ is an arbitrary domain in $\mathbb{R}^N$, with $N\ge 3$, $\alpha\in(0,2)$, and $p={2(N-\alpha)\over N-2}$ is the corresponding critical exponent. A lack of compactness may occur when $0\in\overline\Omega$ or $\Omega$ is unbounded, because of concentration phenomena at the origin or vanishing, due to dilation invariance. We study the existence of positive solutions with respect to the geometry of the domain $\Omega$.
Singular elliptic problems with critical growth
CALDIROLI, Paolo;
2002-01-01
Abstract
We consider Dirichlet problems of the form $-|x|^\alpha\Delta u=|u|^{p-2}u$ in $\Omega$, $u=0$ on $\partial\Omega$, where $\Omega$ is an arbitrary domain in $\mathbb{R}^N$, with $N\ge 3$, $\alpha\in(0,2)$, and $p={2(N-\alpha)\over N-2}$ is the corresponding critical exponent. A lack of compactness may occur when $0\in\overline\Omega$ or $\Omega$ is unbounded, because of concentration phenomena at the origin or vanishing, due to dilation invariance. We study the existence of positive solutions with respect to the geometry of the domain $\Omega$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CommPDE2002.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
258.43 kB
Formato
Adobe PDF
|
258.43 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.