We consider Dirichlet problems of the form $-|x|^\alpha\Delta u=|u|^{p-2}u$ in $\Omega$, $u=0$ on $\partial\Omega$, where $\Omega$ is an arbitrary domain in $\mathbb{R}^N$, with $N\ge 3$, $\alpha\in(0,2)$, and $p={2(N-\alpha)\over N-2}$ is the corresponding critical exponent. A lack of compactness may occur when $0\in\overline\Omega$ or $\Omega$ is unbounded, because of concentration phenomena at the origin or vanishing, due to dilation invariance. We study the existence of positive solutions with respect to the geometry of the domain $\Omega$.

Singular elliptic problems with critical growth

CALDIROLI, Paolo;
2002-01-01

Abstract

We consider Dirichlet problems of the form $-|x|^\alpha\Delta u=|u|^{p-2}u$ in $\Omega$, $u=0$ on $\partial\Omega$, where $\Omega$ is an arbitrary domain in $\mathbb{R}^N$, with $N\ge 3$, $\alpha\in(0,2)$, and $p={2(N-\alpha)\over N-2}$ is the corresponding critical exponent. A lack of compactness may occur when $0\in\overline\Omega$ or $\Omega$ is unbounded, because of concentration phenomena at the origin or vanishing, due to dilation invariance. We study the existence of positive solutions with respect to the geometry of the domain $\Omega$.
2002
27
847
876
http://www.tandfonline.com/doi/abs/10.1081/PDE-120004887
singular elliptic equations; Hardy-Sobolev inequality; variational methods; concentration-compactness principle
Caldiroli P.; Malchiodi A.
File in questo prodotto:
File Dimensione Formato  
CommPDE2002.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 258.43 kB
Formato Adobe PDF
258.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/106077
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact