The stability of magnetic loops to current-driven filamentation instabilities is investigated. The unperturbed atmosphere is assumed to be composed of an (upper) isothermal optically thin low-density portion and a (lower) higher-density portion which is in radiative equilibrium; in both cases, the atmosphere is in hydrostatic equilibrium, so that gravitational stratification is taken into account. In order to provide specific equilibrium conditions for evaluation of the dispersion relation, conditions appropriate for the surface of a solar-type star are adopted; i.e., a fairly low temperature (T = 5000 K) appropriate for a 'precoronal' state associated, for example, with magnetic flux emerging from photospheric levels under the action of magnetic buoyancy. A linear stability analysis is performed, and numerical results show that physically plausible current densities, which would be generated by typical loop-footpoint motions, are effective in driving MHD instabilities in such a plasma. The instability growth rates are strongly dependent on the assumed current density distribution and on the density scale height.

Magnetohydrodynamic thermal instabilities in cool inhomogeneous atmospheres

FERRARI, Attilio;MASSAGLIA, Silvano;
1985-01-01

Abstract

The stability of magnetic loops to current-driven filamentation instabilities is investigated. The unperturbed atmosphere is assumed to be composed of an (upper) isothermal optically thin low-density portion and a (lower) higher-density portion which is in radiative equilibrium; in both cases, the atmosphere is in hydrostatic equilibrium, so that gravitational stratification is taken into account. In order to provide specific equilibrium conditions for evaluation of the dispersion relation, conditions appropriate for the surface of a solar-type star are adopted; i.e., a fairly low temperature (T = 5000 K) appropriate for a 'precoronal' state associated, for example, with magnetic flux emerging from photospheric levels under the action of magnetic buoyancy. A linear stability analysis is performed, and numerical results show that physically plausible current densities, which would be generated by typical loop-footpoint motions, are effective in driving MHD instabilities in such a plasma. The instability growth rates are strongly dependent on the assumed current density distribution and on the density scale height.
1985
291
798
805
Bodo, G.; Ferrari, A.; Massaglia, S.; Rosner, R.; Vaiana, G. S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/108177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact