We consider a Hamiltonian system $\ddot u+\nabla V(u)=0$ where the potential $V\colon\mathbb{R}^N\setminus S\to\mathbb{R}$ has a unique strict global maximum at a point $p\in\mathbb{R}^N$ and a singular set $S\subset\mathbb{R}^N\setminus\{p\}$ such that $\mathbb{R}^N\setminus S$ is open, path-connected and the fundamental group $G=\pi_1(\mathbb{R}^N\setminus S)$ is non trivial. Under some compactness conditions on $V$ at infinity and around the singular set $S$ we study the existence of homoclinic orbits to $p$ which link with $S$. When $V$ and $G$ satisfy suitable geometrical conditions, we can prove the existence of multiple homoclinics, each one belonging to a different homotopy class of $G$.

Multiple homoclinics for a class of singular Hamiltonian systems

CALDIROLI, Paolo;
1997-01-01

Abstract

We consider a Hamiltonian system $\ddot u+\nabla V(u)=0$ where the potential $V\colon\mathbb{R}^N\setminus S\to\mathbb{R}$ has a unique strict global maximum at a point $p\in\mathbb{R}^N$ and a singular set $S\subset\mathbb{R}^N\setminus\{p\}$ such that $\mathbb{R}^N\setminus S$ is open, path-connected and the fundamental group $G=\pi_1(\mathbb{R}^N\setminus S)$ is non trivial. Under some compactness conditions on $V$ at infinity and around the singular set $S$ we study the existence of homoclinic orbits to $p$ which link with $S$. When $V$ and $G$ satisfy suitable geometrical conditions, we can prove the existence of multiple homoclinics, each one belonging to a different homotopy class of $G$.
1997
211
556
573
http://www.sciencedirect.com/science/article/pii/S0022247X97954743
Caldiroli P.; De Coster C.
File in questo prodotto:
File Dimensione Formato  
JMAA1997.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 256.1 kB
Formato Adobe PDF
256.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/108374
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact