We study the families of lines on the quintic threefolds of the pencil $x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 - 5tx_0x_1x_2x_3x_4 = 0$. We show that on the generic threefold of the pencil there exists a 1-dimensional family of lines that is not a cone.

van Geemen's families of lines on special quintic threefolds.

ALBANO, Alberto;
1991-01-01

Abstract

We study the families of lines on the quintic threefolds of the pencil $x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 - 5tx_0x_1x_2x_3x_4 = 0$. We show that on the generic threefold of the pencil there exists a 1-dimensional family of lines that is not a cone.
1991
70
183
188
http://www.springerlink.com/content/1432-1785/?MUD=MP
Alberto Albano; Sheldon Katz
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/108417
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact