We study the problem of existence of homoclinic solutions of a second order asymptotically periodic Hamiltonian system: {\sl find $q\in C^2(\mathbb{R},\mathbb{R}^N)\setminus\{0\}$ such that:} $$ \ddot q=q-V'(t,q)\ ,\quad q(t)\to 0\ \ {\sl and}\ \ \dot q(t)\to 0\ \ {\sl as}\ \ t\to\pm\infty\, \eqno({\rm HS}) $$ where it is assumed that the origin is a local maximum for the corresponding potential, uniformly in time, and that $V'$ is asymptotic, as $t\to\pm\infty$, to time periodic and superquadratic functions $V'_\pm$. We prove via variational methods that if the stable and unstable manifolds associated to the origin of one of the systems at infinity have countable intersection then the problem (HS) has infinitely many homoclinic solutions of multibump type.

Multibump solutions for Duffing–like systems

CALDIROLI, Paolo;
1996-01-01

Abstract

We study the problem of existence of homoclinic solutions of a second order asymptotically periodic Hamiltonian system: {\sl find $q\in C^2(\mathbb{R},\mathbb{R}^N)\setminus\{0\}$ such that:} $$ \ddot q=q-V'(t,q)\ ,\quad q(t)\to 0\ \ {\sl and}\ \ \dot q(t)\to 0\ \ {\sl as}\ \ t\to\pm\infty\, \eqno({\rm HS}) $$ where it is assumed that the origin is a local maximum for the corresponding potential, uniformly in time, and that $V'$ is asymptotic, as $t\to\pm\infty$, to time periodic and superquadratic functions $V'_\pm$. We prove via variational methods that if the stable and unstable manifolds associated to the origin of one of the systems at infinity have countable intersection then the problem (HS) has infinitely many homoclinic solutions of multibump type.
1996
28
115
143
http://rendiconti.dmi.units.it/volumi/28/09.pdf
Hamiltonian systems; homoclinic orbits; multibump solutions; minimax argument
Abenda S.; Caldiroli P.; Montecchiari P.
File in questo prodotto:
File Dimensione Formato  
RendTS1996.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 698.11 kB
Formato Adobe PDF
698.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/110116
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact