Paramagnetic solid-state NMR, extended X-ray absorption fine structure (EXAFS), and Raman spectroscopies, along with detailed quantum mechanical calculations performed with different density functional theory (DFT) functionals, are successfully applied to investigate the magnetic, structural, and vibrational properties of molecularly isolated chromocene (Cp2Cr, where Cp = C5H5) and of its Cp2Cr(CO) adduct. Paramagnetic solid-state NMR unequivocally demonstrates that a spin flip occurs by coming from the paramagnetic Cp2Cr (triplet state) to the diamagnetic Cp2Cr(CO) adduct (singlet state), thus clarifying the theoretical dilemma of the disagreement among different functionals in predicting the most stable spin state. EXAFS and Raman spectroscopies are able to experimentally discriminate between singlet and triplet states, because a different spin state corresponds to a different geometry of the molecule, and therefore to different vibrational features. The here reported multitechnique approach could have great relevance in establishing the occurrence of spin flip in the chemical reactivity of transition metal complexes in both homo- and heterogeneous catalysis.

A Multitechnique Approach to Spin-Flips for Cp2Cr(II) Chemistry in Confined State

GROPPO, Elena Clara;VITILLO, Jenny Grazia;DAMIN, Alessandro Ali;GIANOLIO, DIEGO;LAMBERTI, Carlo;BORDIGA, Silvia;ZECCHINA, Adriano
2010

Abstract

Paramagnetic solid-state NMR, extended X-ray absorption fine structure (EXAFS), and Raman spectroscopies, along with detailed quantum mechanical calculations performed with different density functional theory (DFT) functionals, are successfully applied to investigate the magnetic, structural, and vibrational properties of molecularly isolated chromocene (Cp2Cr, where Cp = C5H5) and of its Cp2Cr(CO) adduct. Paramagnetic solid-state NMR unequivocally demonstrates that a spin flip occurs by coming from the paramagnetic Cp2Cr (triplet state) to the diamagnetic Cp2Cr(CO) adduct (singlet state), thus clarifying the theoretical dilemma of the disagreement among different functionals in predicting the most stable spin state. EXAFS and Raman spectroscopies are able to experimentally discriminate between singlet and triplet states, because a different spin state corresponds to a different geometry of the molecule, and therefore to different vibrational features. The here reported multitechnique approach could have great relevance in establishing the occurrence of spin flip in the chemical reactivity of transition metal complexes in both homo- and heterogeneous catalysis.
114
10
4451
4458
http://pubs.acs.org/doi/abs/10.1021/jp907986w
Spin-Flips reaction; Cp2Cr; Cr(II); carbonyl; Paramagnetic solid-state NMR; EXAFS; Raman spectroscopy
J. Estephane; E. Groppo; J. G. Vitillo; A. Damin; D. Gianolio; C. Lamberti; S. Bordiga; E. A. Quadrelli; J. M. Basset; G. Kervern; L. Emsley; G. Pintacuda; A. Zecchina
File in questo prodotto:
File Dimensione Formato  
10CrCp2CO_SpinFlip.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/117307
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 27
social impact