New smart materials based on phospho-silicate bioactive sol-gel glasses have been developed. To meet the ever-increasing demand for performing bio-materials, the surface features of the glasses have been tailored to achieve optimal behaviour in different applications (drug delivery, enzymes activity, chemo-signalling probe, stimuli-sensitive agents). In particular, the introduction on the glass surface of metal nanoparticles (NPs; Au and Cu are the metals) is very useful because the NPs can directly act, for example, as bactericides and imaging agents and can be used to immobilize, via a covalent linkage, an enzyme/protein and/or a drug on the glass surface. This can be achieved through the formation of self-assembled monolayers (SAMs), in order to obtain a stable bio-conjugate system. The systems prototyped in this way could be useful as materials bio-implantable into the human body. In the present contribution we report the development of smart bio-materials. In particular, it is demonstrated that bioactive glasses containing Au nanoparticles (AuNPs) can be selectively functionalized with small molecules carrying either amino or thiol groups by simply varying the temperature and pH of the functionalization batch. These results should allow the production, in a selective way, of different bonds exhibiting different strengths and, consequently, different release times in solution, with a wide range of possible applications. (For instance, weak Au-N bonds in the case of drug delivery, strong Au-S bonds for protein immobilization). Unlike other works, in which a preliminary silanization process has often been used, the introduction of AuNPs in the glass composition allows to exploit the easy SAMs formation process on the AuNPs dispersed in the bioactive glass matrix and, consequently, to immobilize an enzyme (soybean peroxidase, SBP). A thorough characterization of the materials, at different steps of the functionalization process, is also reported, together with in vitro activity tests of immobilized SBP, compared with merely adsorbed SBP, and cytotoxicity tests using human osteoblast (MG-63) cells. Overall, a new bio-conjugate material, able to maintain its activity over time and to decrease the oxidative stress when in contact with MG-63 cells, has been obtained. In the present work we have also prepared and characterized bioactive glasses containing CuNPs in order to prepare antibacterial biomaterials useful in the field of implantation surgery.

Novel smart bio-nanomaterials: bioactive glasses containing metal nano-particles conjugated with molecules of biological interest

AINA, VALENTINA;MARTRA, Gianmario;BERGANDI, Loredana;GHIGO, Dario Antonio;VALETTI, Francesca
2012-01-01

Abstract

New smart materials based on phospho-silicate bioactive sol-gel glasses have been developed. To meet the ever-increasing demand for performing bio-materials, the surface features of the glasses have been tailored to achieve optimal behaviour in different applications (drug delivery, enzymes activity, chemo-signalling probe, stimuli-sensitive agents). In particular, the introduction on the glass surface of metal nanoparticles (NPs; Au and Cu are the metals) is very useful because the NPs can directly act, for example, as bactericides and imaging agents and can be used to immobilize, via a covalent linkage, an enzyme/protein and/or a drug on the glass surface. This can be achieved through the formation of self-assembled monolayers (SAMs), in order to obtain a stable bio-conjugate system. The systems prototyped in this way could be useful as materials bio-implantable into the human body. In the present contribution we report the development of smart bio-materials. In particular, it is demonstrated that bioactive glasses containing Au nanoparticles (AuNPs) can be selectively functionalized with small molecules carrying either amino or thiol groups by simply varying the temperature and pH of the functionalization batch. These results should allow the production, in a selective way, of different bonds exhibiting different strengths and, consequently, different release times in solution, with a wide range of possible applications. (For instance, weak Au-N bonds in the case of drug delivery, strong Au-S bonds for protein immobilization). Unlike other works, in which a preliminary silanization process has often been used, the introduction of AuNPs in the glass composition allows to exploit the easy SAMs formation process on the AuNPs dispersed in the bioactive glass matrix and, consequently, to immobilize an enzyme (soybean peroxidase, SBP). A thorough characterization of the materials, at different steps of the functionalization process, is also reported, together with in vitro activity tests of immobilized SBP, compared with merely adsorbed SBP, and cytotoxicity tests using human osteoblast (MG-63) cells. Overall, a new bio-conjugate material, able to maintain its activity over time and to decrease the oxidative stress when in contact with MG-63 cells, has been obtained. In the present work we have also prepared and characterized bioactive glasses containing CuNPs in order to prepare antibacterial biomaterials useful in the field of implantation surgery.
2012
NSTI-Nanotech 2012
Santa Clara CA
18-21/06/2012
Nanotechnology 2012: Bio Sensors, Instruments, Medical, Environment and Energy: Bio Nano Materials
www.nsti.org
3
114
117
9781466562769
http://www.nsti.org/procs/Nanotech2012v3/2
Bio-conjugated, Bioactive glasses, Copper, Gold, Metal nanoparticles
Malavasi G.; Lusvardi G.; Menabue L.; Ferrari E.; Saladini M.; Aina V.; Martra G.; Bergandi L.; Ghigo D.; Valetti F.
File in questo prodotto:
File Dimensione Formato  
Smart-biomaterials_nanotech_2012.pdf

Accesso riservato

Tipo di file: MATERIALE NON BIBLIOGRAFICO
Dimensione 3.55 MB
Formato Adobe PDF
3.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/122474
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact