Strigolactones (SLs) have several functions as signaling molecules in their interactions with symbiotic arbuscular mycorrhizal (AM) fungi and the parasitic weeds Orobanche and Striga. SLs are also a new class of plant hormone regulating plant development. In all three organisms, a specific and sensitive receptor-mediated perception system is suggested. By comparing the activity of synthetic SL analogs on Arabidopsis root-hair elongation, Orobanche aegyptiaca seed germination, and hyphal branching of the AM fungus Glomus intraradices, we found that each of the tested organisms differs in its response to the various examined synthetic SL analogs. Structure-function relations of the SL analogs suggest substitutions on the A-ring as the cause of this variation. Moreover, the description of competitive antagonistic analogs suggests that the A-ring of SL can affect not only affinity to the receptor, but also the molecule's ability to activate it. The results support the conclusion that Arabidopsis, Orobanche, and AM fungi possess variations in receptor sensitivity to SL analogs, probably due to variation in SL receptors among the different species.

Structure-function relations of strigolactone analogs: Activity as plant hormones and plant interactions

PRANDI, Cristina;TABASSO, Silvia;
2013-01-01

Abstract

Strigolactones (SLs) have several functions as signaling molecules in their interactions with symbiotic arbuscular mycorrhizal (AM) fungi and the parasitic weeds Orobanche and Striga. SLs are also a new class of plant hormone regulating plant development. In all three organisms, a specific and sensitive receptor-mediated perception system is suggested. By comparing the activity of synthetic SL analogs on Arabidopsis root-hair elongation, Orobanche aegyptiaca seed germination, and hyphal branching of the AM fungus Glomus intraradices, we found that each of the tested organisms differs in its response to the various examined synthetic SL analogs. Structure-function relations of the SL analogs suggest substitutions on the A-ring as the cause of this variation. Moreover, the description of competitive antagonistic analogs suggests that the A-ring of SL can affect not only affinity to the receptor, but also the molecule's ability to activate it. The results support the conclusion that Arabidopsis, Orobanche, and AM fungi possess variations in receptor sensitivity to SL analogs, probably due to variation in SL receptors among the different species.
2013
6
1
141
152
development, plant-microbe interactions, Arabidopsis
Maja Cohen; Cristina Prandi; Ernesto Occhiato; Silvia Tabasso; Smadar Wininger; Nathalie Resnick; Yosef Steineberger; Hinanit Koltai; and Yoram Kapulnik
File in questo prodotto:
File Dimensione Formato  
PIIS1674205214608868.pdf

Accesso aperto

Descrizione: articolo principale
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/122626
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 38
social impact