Parameter estimation in diffusion processes from discrete observations up to a first- passage time is clearly of practical relevance, but does not seem to have been studied so far. In neuroscience, many models for the membrane potential evolution involve the presence of an upper threshold. Data are modelled as discretely observed diffusions which are killed when the threshold is reached. Statistical inference is often based on a misspecified likelihood ignoring the presence of the threshold causing severe bias, e.g. the bias incurred in the drift parameters of the Ornstein– Uhlenbeck model for biological relevant parameters can be up to 25–100 per cent. We compute or approximate the likelihood function of the killed process. When estimating from a single trajectory, considerable bias may still be present, and the distribution of the estimates can be heavily skewed and with a huge variance. Parametric bootstrap is effective in correcting the bias. Standard asymp- totic results do not apply, but consistency and asymptotic normality may be recovered when multiple trajectories are observed, if the mean first-passage time through the threshold is finite. Numerical examples illustrate the results and an experimental data set of intracellular recordings of the mem- brane potential of a motoneuron is analysed.
Estimation in Discretely Observed Diffusions Killed at a Threshold
BIBBONA, Enrico;
2013-01-01
Abstract
Parameter estimation in diffusion processes from discrete observations up to a first- passage time is clearly of practical relevance, but does not seem to have been studied so far. In neuroscience, many models for the membrane potential evolution involve the presence of an upper threshold. Data are modelled as discretely observed diffusions which are killed when the threshold is reached. Statistical inference is often based on a misspecified likelihood ignoring the presence of the threshold causing severe bias, e.g. the bias incurred in the drift parameters of the Ornstein– Uhlenbeck model for biological relevant parameters can be up to 25–100 per cent. We compute or approximate the likelihood function of the killed process. When estimating from a single trajectory, considerable bias may still be present, and the distribution of the estimates can be heavily skewed and with a huge variance. Parametric bootstrap is effective in correcting the bias. Standard asymp- totic results do not apply, but consistency and asymptotic normality may be recovered when multiple trajectories are observed, if the mean first-passage time through the threshold is finite. Numerical examples illustrate the results and an experimental data set of intracellular recordings of the mem- brane potential of a motoneuron is analysed.File | Dimensione | Formato | |
---|---|---|---|
Supporting_info.pdf
Accesso aperto
Tipo di file:
MATERIALE NON BIBLIOGRAFICO
Dimensione
183.46 kB
Formato
Adobe PDF
|
183.46 kB | Adobe PDF | Visualizza/Apri |
bibbona_sjs.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.