Functional data featured by a spatial dependence structure occur in many environmental sciences when curves are observed, for example, along time or along depth. Recently, some methods allowing for the prediction of a curve at an unmonitored site have been developed. However, the existing methods do not allow to include in a model exogenous variables that, for example, bring meteorology information in modeling air pollutant concentrations. In order to introduce exogenous variables, potentially observed as curves as well, we propose to extend the so-called kriging with external drift - or regression kriging - to the case of functional data by means of a three-step procedure involving functional modeling for the trend and spatial interpolation of functional residuals. Our case study considers daily PM10 concentrations measured from October 2005 to March 2006 by the monitoring network of Piemonte region (Italy), with the trend defined by meteorological time-varying covariates and orographical constant-in-time variables.

Kriging with external drift for functional data for air quality monitoring

IGNACCOLO, Rosaria;
2012

Abstract

Functional data featured by a spatial dependence structure occur in many environmental sciences when curves are observed, for example, along time or along depth. Recently, some methods allowing for the prediction of a curve at an unmonitored site have been developed. However, the existing methods do not allow to include in a model exogenous variables that, for example, bring meteorology information in modeling air pollutant concentrations. In order to introduce exogenous variables, potentially observed as curves as well, we propose to extend the so-called kriging with external drift - or regression kriging - to the case of functional data by means of a three-step procedure involving functional modeling for the trend and spatial interpolation of functional residuals. Our case study considers daily PM10 concentrations measured from October 2005 to March 2006 by the monitoring network of Piemonte region (Italy), with the trend defined by meteorological time-varying covariates and orographical constant-in-time variables.
Sixth International Workshop on Spatio-Temporal Modelling (METMA6)
Guimarães
September 2012
Proceedings of the VI International Workshop on Spatio-Temporal Modelling (METMA6)
University of Minho, Portugal
1
4
9789899793903
IGNACCOLO R.; MATEU J.; GIRALDO R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/126495
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact