We consider a class of Fourier integral operators, globally dened on R^d, with symbols and phases satisfying product type estimates (the so-called SG or scattering classes). We prove a sharp continuity result for such operators when acting on the modulation spaces Mp. The minimal loss of derivatives is shown to be d|1/2-1/p|. This global perspective produces a loss of decay as well, given by the same order. Strictly related, striking examples of unboundedness on L^p spaces are presented.

On the Global Boundedness of Fourier IntegralOperators

CORDERO, Elena;RODINO, Luigi Giacomo
2010-01-01

Abstract

We consider a class of Fourier integral operators, globally dened on R^d, with symbols and phases satisfying product type estimates (the so-called SG or scattering classes). We prove a sharp continuity result for such operators when acting on the modulation spaces Mp. The minimal loss of derivatives is shown to be d|1/2-1/p|. This global perspective produces a loss of decay as well, given by the same order. Strictly related, striking examples of unboundedness on L^p spaces are presented.
2010
38
4
373
398
http://arxiv.org/pdf/0804.3928v1.pdf
Fourier Integral Operators; SG classes
E. Cordero; F. Nicola; L. Rodino
File in questo prodotto:
File Dimensione Formato  
nicola.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 444.2 kB
Formato Adobe PDF
444.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/127830
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 31
social impact