We consider a class of Fourier integral operators, globally dened on R^d, with symbols and phases satisfying product type estimates (the so-called SG or scattering classes). We prove a sharp continuity result for such operators when acting on the modulation spaces Mp. The minimal loss of derivatives is shown to be d|1/2-1/p|. This global perspective produces a loss of decay as well, given by the same order. Strictly related, striking examples of unboundedness on L^p spaces are presented.
On the Global Boundedness of Fourier IntegralOperators
CORDERO, Elena;RODINO, Luigi Giacomo
2010-01-01
Abstract
We consider a class of Fourier integral operators, globally dened on R^d, with symbols and phases satisfying product type estimates (the so-called SG or scattering classes). We prove a sharp continuity result for such operators when acting on the modulation spaces Mp. The minimal loss of derivatives is shown to be d|1/2-1/p|. This global perspective produces a loss of decay as well, given by the same order. Strictly related, striking examples of unboundedness on L^p spaces are presented.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
nicola.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
444.2 kB
Formato
Adobe PDF
|
444.2 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.