Given a function $H\in C^{1}(\mathbb{R}^{3})$ asymptotic to a constant at infinity, we investigate the existence of nontrivial, conformal surfaces parametrized by the sphere, with mean curvature $H$ and minimal energy.

S2-type parametric surfaces with prescribed mean curvature and minimal energy

CALDIROLI, Paolo;
2003-01-01

Abstract

Given a function $H\in C^{1}(\mathbb{R}^{3})$ asymptotic to a constant at infinity, we investigate the existence of nontrivial, conformal surfaces parametrized by the sphere, with mean curvature $H$ and minimal energy.
2003
Nonlinear Equations: Methods, Models and Applications
Birkhäuser
54
61
77
9783764303983
http://www.springer.com/birkhauser/mathematics/book/978-3-7643-0398-3
Caldiroli P.; Musina R.
File in questo prodotto:
File Dimensione Formato  
bergamo2003.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 246.94 kB
Formato Adobe PDF
246.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/128196
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 3
social impact