We prove that the smallest degree of an apolar 0-dimensional scheme of a general cubic form in n + 1 variables is at most 2n + 2, when n >= 8, and therefore smaller than the rank of the form. For the general reducible cubic form the smallest degree of an apolar subscheme is n + 2, while the rank is at least 2n.

On the cactus rank of cubic forms

BERNARDI, Alessandra;
2013-01-01

Abstract

We prove that the smallest degree of an apolar 0-dimensional scheme of a general cubic form in n + 1 variables is at most 2n + 2, when n >= 8, and therefore smaller than the rank of the form. For the general reducible cubic form the smallest degree of an apolar subscheme is n + 2, while the rank is at least 2n.
2013
50
291
297
http://dx.doi.org/10.1016/j.jsc.2012.08.001
Bernardi A; Ranestad K
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/128987
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 33
social impact