The availability of data represented with multiple features coming from heterogeneous domains is getting more and more common in real world applications. Such data represent objects of a certain type, connected to other types of data, the features, so that the overall data schema forms a star structure of inter-relationships. Co-clustering these data involves the specification of many parameters, such as the number of clusters for the object dimension and for all the features domains. We present a novel co-clustering algorithm for heterogeneous star-structured data that is parameter-less. This means that it does not require either the number of row clusters or the number of column clusters for the given feature spaces. Our approach optimizes the Goodman-Kruskal's tau, a measure for cross-association in contingency tables that evaluates the strength of the relationship between two categorical variables. We extend tau to evaluate co-clustering solutions and in particular we apply it in a higher dimensional setting. We propose the algorithm CoStar which optimizes tau by a local search approach.
CoStar: Parameter-less Co-Clustering for Star-structured Heterogeneous Data
IENCO, Dino;PENSA, Ruggero Gaetano;MEO, Rosa
2012-01-01
Abstract
The availability of data represented with multiple features coming from heterogeneous domains is getting more and more common in real world applications. Such data represent objects of a certain type, connected to other types of data, the features, so that the overall data schema forms a star structure of inter-relationships. Co-clustering these data involves the specification of many parameters, such as the number of clusters for the object dimension and for all the features domains. We present a novel co-clustering algorithm for heterogeneous star-structured data that is parameter-less. This means that it does not require either the number of row clusters or the number of column clusters for the given feature spaces. Our approach optimizes the Goodman-Kruskal's tau, a measure for cross-association in contingency tables that evaluates the strength of the relationship between two categorical variables. We extend tau to evaluate co-clustering solutions and in particular we apply it in a higher dimensional setting. We propose the algorithm CoStar which optimizes tau by a local search approach.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.