GABA is a molecule of increasing nutraceutical interest due to its modulatory activity on the central nervous system and smooth muscle relaxation. Potentially probiotic bacteria can produce it by glutamate decarboxylation, but nothing is known about the physiological modifications occurring at the microbial level during GABA production. In the present investigation, a GABA-producing Lactococcus lactis strain grown in a medium supplemented with or without glutamate was studied using a combined transcriptome/proteome analysis. A tenfold increase in GABA production in the glutamate medium was observed only during the stationary phase and at low pH. About 30 genes and/or proteins were shown to be differentially expressed in glutamate-stimulated conditions as compared to control conditions, and the modulation exerted by glutamate on entire metabolic pathways was highlighted by the complementary nature of transcriptomics and proteomics. Most glutamate-induced responses consisted in under-expression of metabolic pathways, with the exception of glycolysis where either over-or under-expression of specific genes was observed. The energy-producing arginine deiminase pathway, the ATPase, and also some stress proteins were down-regulated, suggesting that glutamate is not only an alternative means to get energy, but also a protective agent against stress for the strain studied.

Glutamate-induced metabolic changes in Lactococcus lactis NCDO2118 during GABA production: combined transcriptomic and proteomic analysis.

MAZZOLI, Roberto;PESSIONE, Enrica;GIUNTA, Carlo;
2010-01-01

Abstract

GABA is a molecule of increasing nutraceutical interest due to its modulatory activity on the central nervous system and smooth muscle relaxation. Potentially probiotic bacteria can produce it by glutamate decarboxylation, but nothing is known about the physiological modifications occurring at the microbial level during GABA production. In the present investigation, a GABA-producing Lactococcus lactis strain grown in a medium supplemented with or without glutamate was studied using a combined transcriptome/proteome analysis. A tenfold increase in GABA production in the glutamate medium was observed only during the stationary phase and at low pH. About 30 genes and/or proteins were shown to be differentially expressed in glutamate-stimulated conditions as compared to control conditions, and the modulation exerted by glutamate on entire metabolic pathways was highlighted by the complementary nature of transcriptomics and proteomics. Most glutamate-induced responses consisted in under-expression of metabolic pathways, with the exception of glycolysis where either over-or under-expression of specific genes was observed. The energy-producing arginine deiminase pathway, the ATPase, and also some stress proteins were down-regulated, suggesting that glutamate is not only an alternative means to get energy, but also a protective agent against stress for the strain studied.
2010
39
727
737
Mazzoli R; Pessione E; Dufour M; Laroute V; Giuffrida MG; Giunta C; Cocaign-Bousquet M; Loubière P.
File in questo prodotto:
File Dimensione Formato  
Mazzoli et al 2010 GABA.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 494.74 kB
Formato Adobe PDF
494.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/130376
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 48
social impact