We analyze a peer-assisted Video-on-Demand system in which users contribute their upload bandwidth to the redistribution of a video that they are downloading or that they have cached locally. Our target is to characterize the additional bandwidth that servers must supply to immediately satisfy all requests to watch a given video. We develop an approximate fluid model to compute the required server bandwidth in the sequential delivery case. Our approach is able to capture several stochastic effects related to peer churn, upload bandwidth heterogeneity, non-stationary traffic conditions, which have not been documented or analyzed before. We provide an analytical methodology to design efficient peer-assisted VoD systems and optimal resource allocation strategies.
Performance analysis of non-stationary peer-assisted VoD systems
GARETTO, MICHELE;
2012-01-01
Abstract
We analyze a peer-assisted Video-on-Demand system in which users contribute their upload bandwidth to the redistribution of a video that they are downloading or that they have cached locally. Our target is to characterize the additional bandwidth that servers must supply to immediately satisfy all requests to watch a given video. We develop an approximate fluid model to compute the required server bandwidth in the sequential delivery case. Our approach is able to capture several stochastic effects related to peer churn, upload bandwidth heterogeneity, non-stationary traffic conditions, which have not been documented or analyzed before. We provide an analytical methodology to design efficient peer-assisted VoD systems and optimal resource allocation strategies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.