We consider a peer-assisted Video-on-demand system, in which video distribution is supported both by peers caching the whole video and by peers concurrently downloading it. We propose a stochastic fluid framework that allows to characterize the additional bandwidth requested from the servers to satisfy all users watching a given video. We obtain analytical upper bounds to the server bandwidth needed in the case in which users download the video content sequentially. We also present a methodology to obtain exact solutions for special cases of peer upload bandwidth distribution. Our bounds permit to tightly characterize the performance of peer-assisted VoD systems as the number of users increases, for both sequential and non-sequential delivery schemes. In particular, we rigorously prove that the simple sequential scheme is asymptotically optimal both in the bandwidth surplus and in the bandwidth deficit mode, and that peer-assisted systems become totally self-sustaining in the surplus mode as the number of users grows large.
Stochastic analysis of self-sustainability in peer-assisted VoD systems
GARETTO, MICHELE;
2012-01-01
Abstract
We consider a peer-assisted Video-on-demand system, in which video distribution is supported both by peers caching the whole video and by peers concurrently downloading it. We propose a stochastic fluid framework that allows to characterize the additional bandwidth requested from the servers to satisfy all users watching a given video. We obtain analytical upper bounds to the server bandwidth needed in the case in which users download the video content sequentially. We also present a methodology to obtain exact solutions for special cases of peer upload bandwidth distribution. Our bounds permit to tightly characterize the performance of peer-assisted VoD systems as the number of users increases, for both sequential and non-sequential delivery schemes. In particular, we rigorously prove that the simple sequential scheme is asymptotically optimal both in the bandwidth surplus and in the bandwidth deficit mode, and that peer-assisted systems become totally self-sustaining in the surplus mode as the number of users grows large.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.