An integrated experimental-theoretical approach for the solid-state NMR investigation of a series of hydrogen-storage materials is illustrated. Seven experimental room-temperature structures of groups I and II metal hydrides and borohydrides, namely, NaH, LiH, NaBH4, MgH2, CaH 2, Ca(BH4)2, and LiBH4, were computationally optimized. Periodic lattice calculations were performed by means of the plane-wave method adopting the density functional theory (DFT) generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional as implemented in the Quantum ESPRESSO package. Projector augmented wave (PAW), including the gauge-including projected augmented-wave (GIPAW), methods for solid-state NMR calculations were used adopting both Rappe-Rabe-Kaxiras-Joannopoulos (RRKJ) ultrasoft pseudopotentials and new developed pseudopotentials. Computed GIPAW chemical shifts were critically compared with the experimental ones. A good agreement between experimental and computed multinuclear chemical shifts was obtained.
Coupling Solid-State NMR with GIPAW ab Initio Calculations in Metal Hydrides and Borohydrides
FRANCO, FEDERICO;BARICCO, Marcello;CHIEROTTI, Michele Remo;GOBETTO, Roberto;NERVI, Carlo
2013-01-01
Abstract
An integrated experimental-theoretical approach for the solid-state NMR investigation of a series of hydrogen-storage materials is illustrated. Seven experimental room-temperature structures of groups I and II metal hydrides and borohydrides, namely, NaH, LiH, NaBH4, MgH2, CaH 2, Ca(BH4)2, and LiBH4, were computationally optimized. Periodic lattice calculations were performed by means of the plane-wave method adopting the density functional theory (DFT) generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional as implemented in the Quantum ESPRESSO package. Projector augmented wave (PAW), including the gauge-including projected augmented-wave (GIPAW), methods for solid-state NMR calculations were used adopting both Rappe-Rabe-Kaxiras-Joannopoulos (RRKJ) ultrasoft pseudopotentials and new developed pseudopotentials. Computed GIPAW chemical shifts were critically compared with the experimental ones. A good agreement between experimental and computed multinuclear chemical shifts was obtained.File | Dimensione | Formato | |
---|---|---|---|
j phys chemC2013,117,9991-completo-open access.pdf
Open Access dal 13/04/2014
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.74 MB
Formato
Adobe PDF
|
1.74 MB | Adobe PDF | Visualizza/Apri |
j phys chemC2013,117,9991-completo.pdf
Accesso riservato
Descrizione: articolo completo
Tipo di file:
PDF EDITORIALE
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.