Let p be a prime and B be a quaternion algebra indefinite over Q and ramified at p. We consider the space of quaternionic modular forms of weight k and level p∞, endowed with the action of Hecke operators. By using cohomological methods, we show that the p-adic topological Hecke algebra does not depend on the weight k. This result provides a quaternionic version of a theorem proved by Hida for classical modular forms; we discuss the relationship of our result to Hida's theorem in terms of Jacquet-Langlands correspondence.
A weight independence result for quaternionic Hecke Algebras
TERRACINI, Lea
2013-01-01
Abstract
Let p be a prime and B be a quaternion algebra indefinite over Q and ramified at p. We consider the space of quaternionic modular forms of weight k and level p∞, endowed with the action of Hecke operators. By using cohomological methods, we show that the p-adic topological Hecke algebra does not depend on the weight k. This result provides a quaternionic version of a theorem proved by Hida for classical modular forms; we discuss the relationship of our result to Hida's theorem in terms of Jacquet-Langlands correspondence.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
copertina.pdf
Open Access dal 01/01/2016
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
591.45 kB
Formato
Adobe PDF
|
591.45 kB | Adobe PDF | Visualizza/Apri |
IJNT2013.pdf
Accesso riservato
Descrizione: Articolo
Tipo di file:
PDF EDITORIALE
Dimensione
401.66 kB
Formato
Adobe PDF
|
401.66 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.