Let p be a prime and B be a quaternion algebra indefinite over Q and ramified at p. We consider the space of quaternionic modular forms of weight k and level p∞, endowed with the action of Hecke operators. By using cohomological methods, we show that the p-adic topological Hecke algebra does not depend on the weight k. This result provides a quaternionic version of a theorem proved by Hida for classical modular forms; we discuss the relationship of our result to Hida's theorem in terms of Jacquet-Langlands correspondence.

A weight independence result for quaternionic Hecke Algebras

TERRACINI, Lea
2013-01-01

Abstract

Let p be a prime and B be a quaternion algebra indefinite over Q and ramified at p. We consider the space of quaternionic modular forms of weight k and level p∞, endowed with the action of Hecke operators. By using cohomological methods, we show that the p-adic topological Hecke algebra does not depend on the weight k. This result provides a quaternionic version of a theorem proved by Hida for classical modular forms; we discuss the relationship of our result to Hida's theorem in terms of Jacquet-Langlands correspondence.
2013
9
8
1895
1922
http://www.worldscientific.com/doi/abs/10.1142/S1793042113500656?af=R
Modular forms; quaternion algebras; Hecke algebras; cohomology of Shimura curves
Lea Terracini
File in questo prodotto:
File Dimensione Formato  
copertina.pdf

Open Access dal 01/01/2016

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 591.45 kB
Formato Adobe PDF
591.45 kB Adobe PDF Visualizza/Apri
IJNT2013.pdf

Accesso riservato

Descrizione: Articolo
Tipo di file: PDF EDITORIALE
Dimensione 401.66 kB
Formato Adobe PDF
401.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/140411
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact