The aim of this study is to apply the Nutrient Analysis Critical Control Point (NACCP) process to ensure that the highest nutrient levels in food can determine a beneficial effect on the health of the consumer. The NACCP process involves a sequence of analysis and controls that depart from raw material production to the evaluation of the effect of nutrition on health. It is articulated through the following points: 1) identification of nutrient level in the food; 2) identification of critical control points (environmental, genetic data, chemical and physical data, production technology, distribution and administration); 3) establishing critical limits that can impoverish and damage the nutrient; 4) establishing measures to monitor; 5) establishing corrective actions. We selected as bio- markers the total phenolic content (TPC) and total antioxidant capacity (TAC) of a genotyped Italian hazelnut cultivars (Corylus e avellana L.). We performed a clinical study evaluating: a) nutritional status; b) clinical-bio- chemical parameters; c) low density lipoprotein oxidation (LDL-ox); d) the expression level changes of oxidative stress pathway genes in the blood cell at baseline and after 40 g/die of hazelnut consumption. In this study, we found a significant lowering (p ≤ 0.005) of LDL oxidized proteins, in association with the consumption of 40 g/d of hazelnuts. Also, we found a significant variation (p ≤ 0.005) of gene expression of antioxidant and pro-oxidant genes, between the intake of dietary with and without hazelnuts. This results support the hypothesis that the NACCP process could be applied to obtain significant benefits in terms of primary prevention and for contrib- uting to the amelioration of food management at the consumer level.

Nutrient Analysis Critical Control Point (NACCP): Hazelnut as a Prototype of Nutrigenomic Study

BOTTA, Roberto;CONTESSA, CECILIA;SARTOR, CHIARA;
2014-01-01

Abstract

The aim of this study is to apply the Nutrient Analysis Critical Control Point (NACCP) process to ensure that the highest nutrient levels in food can determine a beneficial effect on the health of the consumer. The NACCP process involves a sequence of analysis and controls that depart from raw material production to the evaluation of the effect of nutrition on health. It is articulated through the following points: 1) identification of nutrient level in the food; 2) identification of critical control points (environmental, genetic data, chemical and physical data, production technology, distribution and administration); 3) establishing critical limits that can impoverish and damage the nutrient; 4) establishing measures to monitor; 5) establishing corrective actions. We selected as bio- markers the total phenolic content (TPC) and total antioxidant capacity (TAC) of a genotyped Italian hazelnut cultivars (Corylus e avellana L.). We performed a clinical study evaluating: a) nutritional status; b) clinical-bio- chemical parameters; c) low density lipoprotein oxidation (LDL-ox); d) the expression level changes of oxidative stress pathway genes in the blood cell at baseline and after 40 g/die of hazelnut consumption. In this study, we found a significant lowering (p ≤ 0.005) of LDL oxidized proteins, in association with the consumption of 40 g/d of hazelnuts. Also, we found a significant variation (p ≤ 0.005) of gene expression of antioxidant and pro-oxidant genes, between the intake of dietary with and without hazelnuts. This results support the hypothesis that the NACCP process could be applied to obtain significant benefits in terms of primary prevention and for contrib- uting to the amelioration of food management at the consumer level.
2014
5
79
88
NACCP Process; Hazelnut; Nutrigenomic; Oxidative Stress; LDL-Oxidation
Laura Di Renzo; Alberto Carraro; Daniela Minella; Roberto Botta; Cecilia Contessa; Chiara Sartor; Anna Maria Iacopino; Antonino De Lorenzo
File in questo prodotto:
File Dimensione Formato  
FNS_2014011515300037.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 457.13 kB
Formato Adobe PDF
457.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/141454
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact