Selenium (Se) has received great attention in the last few years, as it is considered to be essential for human health (prevention of viral infections, heart diseases and ageing-related diseases). Se deficiency can be counteracted by the administration of selenium-enriched probiotics that are able to convert inorganic selenium into less toxic and more bio-available organic forms. This study was performed on Lactobacillus reuteri Lb2 BM DSM 16143, a probiotic LAB previously demonstrated to be able to fix Se into selenocysteines. The aim was to assess Se influence on its metabolism, by a 2-DE proteomic approach, on two different cellular districts: envelope-enriched and extracellular proteomes. While in the envelope-enriched fraction 15 differentially expressed proteins were identified, in the extracellular proteome no quantitative difference was detected. However, at a molecular level, we observed the insertion of Se into selenocysteine, exclusively under the stimulated conditions. The obtained results confirmed the possibility to use L. reuteri Lb2 BM DSM 16143 as a carrier of organic Se that can be easily released in the gut becoming available for the human host.
Selenium effects on the metabolism of a Se-metabolizing Lactobacillus reuteri: analysis of envelope-enriched and extracellular proteomes
MANGIAPANE, ERIKA;LAMBERTI, Cristina;PESSIONE, ALESSANDRO;PESSIONE, Enrica
2014-01-01
Abstract
Selenium (Se) has received great attention in the last few years, as it is considered to be essential for human health (prevention of viral infections, heart diseases and ageing-related diseases). Se deficiency can be counteracted by the administration of selenium-enriched probiotics that are able to convert inorganic selenium into less toxic and more bio-available organic forms. This study was performed on Lactobacillus reuteri Lb2 BM DSM 16143, a probiotic LAB previously demonstrated to be able to fix Se into selenocysteines. The aim was to assess Se influence on its metabolism, by a 2-DE proteomic approach, on two different cellular districts: envelope-enriched and extracellular proteomes. While in the envelope-enriched fraction 15 differentially expressed proteins were identified, in the extracellular proteome no quantitative difference was detected. However, at a molecular level, we observed the insertion of Se into selenocysteine, exclusively under the stimulated conditions. The obtained results confirmed the possibility to use L. reuteri Lb2 BM DSM 16143 as a carrier of organic Se that can be easily released in the gut becoming available for the human host.File | Dimensione | Formato | |
---|---|---|---|
Mangiapane 2014.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
1.73 MB
Formato
Adobe PDF
|
1.73 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.