The increasing availability of personal data of a sequential nature, such as time-stamped transaction or location data, enables increasingly sophisticated sequential pattern mining techniques. However, privacy is at risk if it is possible to reconstruct the identity of individuals from sequential data. Therefore, it is important to develop privacy-preserving techniques that support publishing of really anonymous data, without altering the analysis results significantly. In this paper we propose to apply the Privacy-by-design paradigm for designing a technological framework to counter the threats of undesirable, unlawful effects of privacy violation on sequence data, without obstructing the knowledge discovery opportunities of data mining technologies. First, we introduce a k-anonymity framework for sequence data, by defining the sequence linking attack model and its associated countermeasure, a k-anonymity notion for sequence datasets, which provides a formal protection against the attack. Second, we instantiate this framework and provide a specific method for constructing the k-anonymous version of a sequence dataset, which preserves the results of sequential pattern mining, together with several basic statistics and other analytical properties of the original data, including the clustering structure. A comprehensive experimental study on realistic datasets of process-logs, web-logs and GPS tracks is carried out, which empirically shows how, in our proposed method, the protection of privacy meets analytical utility.

Anonymity preserving sequential pattern mining

PENSA, Ruggero Gaetano;
2014-01-01

Abstract

The increasing availability of personal data of a sequential nature, such as time-stamped transaction or location data, enables increasingly sophisticated sequential pattern mining techniques. However, privacy is at risk if it is possible to reconstruct the identity of individuals from sequential data. Therefore, it is important to develop privacy-preserving techniques that support publishing of really anonymous data, without altering the analysis results significantly. In this paper we propose to apply the Privacy-by-design paradigm for designing a technological framework to counter the threats of undesirable, unlawful effects of privacy violation on sequence data, without obstructing the knowledge discovery opportunities of data mining technologies. First, we introduce a k-anonymity framework for sequence data, by defining the sequence linking attack model and its associated countermeasure, a k-anonymity notion for sequence datasets, which provides a formal protection against the attack. Second, we instantiate this framework and provide a specific method for constructing the k-anonymous version of a sequence dataset, which preserves the results of sequential pattern mining, together with several basic statistics and other analytical properties of the original data, including the clustering structure. A comprehensive experimental study on realistic datasets of process-logs, web-logs and GPS tracks is carried out, which empirically shows how, in our proposed method, the protection of privacy meets analytical utility.
2014
22
2
141
173
http://link.springer.com/article/10.1007/s10506-014-9154-6
privacy-by-design; sequence data; k-anonymity
Anna Monreale; Dino Pedreschi; Ruggero G. Pensa; Fabio Pinelli
File in questo prodotto:
File Dimensione Formato  
arti2014_draft.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
arti2014_draft_4aperto_1280022.pdf

Open Access dal 01/07/2015

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri
arti2014_printed.pdf

Accesso riservato

Descrizione: PDF versione a stampa
Tipo di file: PDF EDITORIALE
Dimensione 1.61 MB
Formato Adobe PDF
1.61 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/141980
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact