The aim of this paper is the analysis of the fractional Poisson process where the state probabilities $p_k^{\nu_k}(t)$, $t\ge 0$, are governed by time-fractional equations of order $0<\nu_k\leq 1$ depending on the number $k$ of events occurred up to time $t$. We are able to obtain explicitely the Laplace transform of $p_k^{\nu_k}(t)$ and various representations of state probabilities. We show that the Poisson process with intermediate waiting times depending on $\nu_k$ differs from that constructed from the fractional state equations (in the case $\nu_k = \nu$, for all $k$, they coincide with the time-fractional Poisson process). We also introduce a different form of fractional state-dependent Poisson process as a weighted sum of homogeneous Poisson processes. Finally we consider the fractional birth process governed by equations with state-dependent fractionality.
State-dependent Fractional Point Processes
POLITO, Federico
2015-01-01
Abstract
The aim of this paper is the analysis of the fractional Poisson process where the state probabilities $p_k^{\nu_k}(t)$, $t\ge 0$, are governed by time-fractional equations of order $0<\nu_k\leq 1$ depending on the number $k$ of events occurred up to time $t$. We are able to obtain explicitely the Laplace transform of $p_k^{\nu_k}(t)$ and various representations of state probabilities. We show that the Poisson process with intermediate waiting times depending on $\nu_k$ differs from that constructed from the fractional state equations (in the case $\nu_k = \nu$, for all $k$, they coincide with the time-fractional Poisson process). We also introduce a different form of fractional state-dependent Poisson process as a weighted sum of homogeneous Poisson processes. Finally we consider the fractional birth process governed by equations with state-dependent fractionality.File | Dimensione | Formato | |
---|---|---|---|
published.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
165.61 kB
Formato
Adobe PDF
|
165.61 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.