Let X be a reflexive and separable Banach space, Br denotes the closed ball of radius r in X and f : Br \to X a continuous mapping in the weak topology of X satisfying the following boundary condition \vert fx \vert < \vert fx - x \vert + \vert x \vert for all x ϵ \partial B_r. This paper contains some theorems of existence of a fixed point under the above boundary condition. Moreover a connection with Leray Schauder nonlinear alternative.

Existence of fixed points for mappings on a ball of a reflexive and separable Banach space

DELBOSCO, Domenico;VIOLA, Gabriella
2006-01-01

Abstract

Let X be a reflexive and separable Banach space, Br denotes the closed ball of radius r in X and f : Br \to X a continuous mapping in the weak topology of X satisfying the following boundary condition \vert fx \vert < \vert fx - x \vert + \vert x \vert for all x ϵ \partial B_r. This paper contains some theorems of existence of a fixed point under the above boundary condition. Moreover a connection with Leray Schauder nonlinear alternative.
2006
32/2
273
280
D. Delbosco; G. Viola
File in questo prodotto:
File Dimensione Formato  
existence of fixed points.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 77.97 kB
Formato Adobe PDF
77.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1428
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact