Let X be a reflexive and separable Banach space, Br denotes the closed ball of radius r in X and f : Br \to X a continuous mapping in the weak topology of X satisfying the following boundary condition \vert fx \vert < \vert fx - x \vert + \vert x \vert for all x ϵ \partial B_r. This paper contains some theorems of existence of a fixed point under the above boundary condition. Moreover a connection with Leray Schauder nonlinear alternative.
Existence of fixed points for mappings on a ball of a reflexive and separable Banach space
DELBOSCO, Domenico;VIOLA, Gabriella
2006-01-01
Abstract
Let X be a reflexive and separable Banach space, Br denotes the closed ball of radius r in X and f : Br \to X a continuous mapping in the weak topology of X satisfying the following boundary condition \vert fx \vert < \vert fx - x \vert + \vert x \vert for all x ϵ \partial B_r. This paper contains some theorems of existence of a fixed point under the above boundary condition. Moreover a connection with Leray Schauder nonlinear alternative.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
existence of fixed points.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
77.97 kB
Formato
Adobe PDF
|
77.97 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.