This study investigates the applicability of an iterative approach aimed at defining a chemical blueprint of virgin olive oil volatiles to be correlated to the product sensory quality. The investigation strategy proposed allows to fully exploit the informative content of a comprehensive multidimensional gas chromatography (GC×GC) coupled to a mass spectrometry (MS) data set. Olive oil samples (19), including 5 reference standards, obtained from the International Olive Oil Council, and commercial samples, were submitted to a sensory evaluation by a Panel test, before being analyzed in two laboratories using different instrumentation, column set, and software elaboration packages in view of a cross-validation of the entire methodology. A first classification of samples based on untargeted peak features information, was obtained on raw data from two different column combinations (apolar×polar and polar×apolar) by applying unsupervised multivariate analysis (i.e., principal component analysis—PCA). However, to improve effectiveness and specificity of this classification, peak features were reliably identified (261 compounds), on the basis of the MS spectrum and linear retention index matching, and subjected to successive pair-wise comparisons based on 2D patterns, which revealed peculiar distribution of chemicals correlated with samples sensory classification. The most nformative compounds were thus identified and collected in a “blueprint” of specific defects (or combination of defects) successively adopted to discriminate Extra Virgin from defected oils (i.e., lampante oil) with the aid of a supervised approach, i.e., partial least squares-discriminant analysis (PLS-DA). In this last step, the principles of sensomics, which assigns higher information potential to analytes with lower odor threshold proved to be successful, and a much more powerful discrimination of samples was obtained in view of a sensory quality assessment.

Toward a definition of blueprint of virgin olive oil by comprehensive two-dimensional gas chromatography

CORDERO, Chiara Emilia Irma;LIBERTO, Erica;BICCHI, Carlo;
2014-01-01

Abstract

This study investigates the applicability of an iterative approach aimed at defining a chemical blueprint of virgin olive oil volatiles to be correlated to the product sensory quality. The investigation strategy proposed allows to fully exploit the informative content of a comprehensive multidimensional gas chromatography (GC×GC) coupled to a mass spectrometry (MS) data set. Olive oil samples (19), including 5 reference standards, obtained from the International Olive Oil Council, and commercial samples, were submitted to a sensory evaluation by a Panel test, before being analyzed in two laboratories using different instrumentation, column set, and software elaboration packages in view of a cross-validation of the entire methodology. A first classification of samples based on untargeted peak features information, was obtained on raw data from two different column combinations (apolar×polar and polar×apolar) by applying unsupervised multivariate analysis (i.e., principal component analysis—PCA). However, to improve effectiveness and specificity of this classification, peak features were reliably identified (261 compounds), on the basis of the MS spectrum and linear retention index matching, and subjected to successive pair-wise comparisons based on 2D patterns, which revealed peculiar distribution of chemicals correlated with samples sensory classification. The most nformative compounds were thus identified and collected in a “blueprint” of specific defects (or combination of defects) successively adopted to discriminate Extra Virgin from defected oils (i.e., lampante oil) with the aid of a supervised approach, i.e., partial least squares-discriminant analysis (PLS-DA). In this last step, the principles of sensomics, which assigns higher information potential to analytes with lower odor threshold proved to be successful, and a much more powerful discrimination of samples was obtained in view of a sensory quality assessment.
2014
1334
101
111
Extra-virgin olive oil; Sensomics; volatile compounds; comprehensive multidimensional gas chromagraphy; fingerprinting; Pattern recognition; aroma defects
Giorgia Purcaro*; Chiara Cordero*; Erica Liberto; Carlo Bicchi; Lanfranco S. Conte
File in questo prodotto:
File Dimensione Formato  
OA_Toward a definition of blueprint of virgin olive oil by comprehensive two-dimensional gas chromatography.pdf

Open Access dal 22/03/2016

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF Visualizza/Apri
final text.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/144439
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 79
social impact