In this paper we consider the Hilbert scheme Hilbnp(t) parameterizing subschemes of Pn with Hilbert polynomial p(t), and we investigate its locus containing points corresponding to schemes with regularity lower than or equal to a fixed integer r′. This locus is an open subscheme of Hilbnp(t) and, for every s≥r′, we describe it as a locally closed subscheme of the Grasmannian GrN(s)p(s) given by a set of equations of degree ≤deg(p(t))+2 and linear inequalities in the coordinates of the Pl\"ucker embedding.

THE LOCUS OF POINTS OF THE HILBERT SCHEME WITH BOUNDED REGULARITY

BERTONE, Cristina;ROGGERO, Margherita
2015-01-01

Abstract

In this paper we consider the Hilbert scheme Hilbnp(t) parameterizing subschemes of Pn with Hilbert polynomial p(t), and we investigate its locus containing points corresponding to schemes with regularity lower than or equal to a fixed integer r′. This locus is an open subscheme of Hilbnp(t) and, for every s≥r′, we describe it as a locally closed subscheme of the Grasmannian GrN(s)p(s) given by a set of equations of degree ≤deg(p(t))+2 and linear inequalities in the coordinates of the Pl\"ucker embedding.
2015
43
7
2912
2931
http://arxiv.org/abs/1111.2007
Hilbert scheme; Castelnuovo-Mumford regularity; Borel-fixed ideal
Edoardo Ballico; Cristina Bertone; Margherita Roggero
File in questo prodotto:
File Dimensione Formato  
BallicoBertoneRoggero.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 205.59 kB
Formato Adobe PDF
205.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/144837
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact