We investigated the relationships between microscale distribution of soil organic matter (SOM) features and their stability by combining optical microscopy, SEM-EDS analysis and NaClO oxidation of soil thin sections on five soils from Harwood Forest in Northumberland (UK) differently affected by water stagnation. Plant organs at different stages of decomposition and amorphous organic matter were observed by optical microscopy in all samples. SOM microfeature distribution, size of SOM features and the relation with the C-to-N ratio suggested that amorphous features could be the end-products of organ transformation. SEM-EDS elemental analysis showed that amorphous material had higher Si/C, Al/C and Fe/C molar ratios than organs, clearly pointing to interactions with the soil inorganic phases, which contributed to SOM stabilisation. Soil porosity coupled with water stagnation seemed to affect the Fe–SOM interactions as a greater proportion of small water retention pores (10– 50 μm) was associated with higher abundance of Fe-rich amorphous organic features. The higher chemical stability of amorphous featureswas confirmed by oxidation.After NaClO treatment, organs were almost totally removed, while amorphous organic material was less affected both morphologically and chemically. Our results demonstrate that in water-affected soils local environment defined by the pore system affects the distribution of SOM microfeatures and that the highest resistance to oxidation of the amorphous features is attributable to the formation of organic–inorganic associations. The proposed combined approach seems to be a promising mean to investigate SOM dynamics by relating features to stability.
Relatingmicrofeatures of soil organic matter to C stabilisation: optical microscopy, SEM-EDS, abiotic oxidation
BONIFACIO, Eleonora
2014-01-01
Abstract
We investigated the relationships between microscale distribution of soil organic matter (SOM) features and their stability by combining optical microscopy, SEM-EDS analysis and NaClO oxidation of soil thin sections on five soils from Harwood Forest in Northumberland (UK) differently affected by water stagnation. Plant organs at different stages of decomposition and amorphous organic matter were observed by optical microscopy in all samples. SOM microfeature distribution, size of SOM features and the relation with the C-to-N ratio suggested that amorphous features could be the end-products of organ transformation. SEM-EDS elemental analysis showed that amorphous material had higher Si/C, Al/C and Fe/C molar ratios than organs, clearly pointing to interactions with the soil inorganic phases, which contributed to SOM stabilisation. Soil porosity coupled with water stagnation seemed to affect the Fe–SOM interactions as a greater proportion of small water retention pores (10– 50 μm) was associated with higher abundance of Fe-rich amorphous organic features. The higher chemical stability of amorphous featureswas confirmed by oxidation.After NaClO treatment, organs were almost totally removed, while amorphous organic material was less affected both morphologically and chemically. Our results demonstrate that in water-affected soils local environment defined by the pore system affects the distribution of SOM microfeatures and that the highest resistance to oxidation of the amorphous features is attributable to the formation of organic–inorganic associations. The proposed combined approach seems to be a promising mean to investigate SOM dynamics by relating features to stability.File | Dimensione | Formato | |
---|---|---|---|
2014 Falsone et al Biol Fertil Soils.pdf
Accesso riservato
Descrizione: articolo
Tipo di file:
PDF EDITORIALE
Dimensione
2.59 MB
Formato
Adobe PDF
|
2.59 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
manuscript per aperTO.doc
Open Access dal 01/12/2015
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
823 kB
Formato
Microsoft Word
|
823 kB | Microsoft Word | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.