In this paper, we advocate high-level programming methodology for next generation sequencers (NGS) alignment tools for both productivity and absolute performance. We analyse the problem of parallel alignment and review the parallelisation strategies of the most popular alignment tools, which can all be abstracted to a single parallel paradigm. We compare these tools to their porting onto the FastFlow pattern-based programming framework, which provides programmers with high-level parallel patterns. By using a high-level approach, programmers are liberated from all complex aspects of parallel programming, such as synchronisation protocols, and task scheduling, gaining more possibility for seamless performance tuning. In this work, we show some use cases in which, by using a high-level approach for parallelising NGS tools, it is possible to obtain comparable or even better absolute performance for all used datasets.
Sequence Alignment Tools: One Parallel Pattern to Rule Them All?
MISALE, CLAUDIA;FERRERO, GIULIO;ALDINUCCI, MARCO
2014-01-01
Abstract
In this paper, we advocate high-level programming methodology for next generation sequencers (NGS) alignment tools for both productivity and absolute performance. We analyse the problem of parallel alignment and review the parallelisation strategies of the most popular alignment tools, which can all be abstracted to a single parallel paradigm. We compare these tools to their porting onto the FastFlow pattern-based programming framework, which provides programmers with high-level parallel patterns. By using a high-level approach, programmers are liberated from all complex aspects of parallel programming, such as synchronisation protocols, and task scheduling, gaining more possibility for seamless performance tuning. In this work, we show some use cases in which, by using a high-level approach for parallelising NGS tools, it is possible to obtain comparable or even better absolute performance for all used datasets.File | Dimensione | Formato | |
---|---|---|---|
539410.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
1.79 MB
Formato
Adobe PDF
|
1.79 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.