In this work we study the mechanical properties and failure mechanism of nano-composites of graphene oxide sheets embedded in polymeric systems, namely films and electro-spun nanofibers. In this last system, contrary to conventional bulk composites, the size of the nano-reinforcement (GO sheets) is comparable to the size of the nanofibers to be reinforced (≈ 200 nm). As polymeric matrix we use gelatin. We demonstrate that the high chemical affinity of the two materials hinders the renaturation of gelatin into collagen and causes a nearly ideal mixing in the GO–gelatin composite. Adding just 1% of GO (wt of GO with respect to gelatin ) we obtain an increase of Young’s modulus >50% and an increase of fracture stress >60%. We use numerical simulations to study the failure mechanism of the fibers. Calculations well agree with experimental data and show that, even if cracks start at GO sheet edges due to stress concentrations, crack propagation is hindered by the nonlinear behaviour of the matrix. Moreover, the presence of the GO sheets in continuous gelatin films improves the material stability to phosphate buffer solutions from 2 days to 2 weeks, making it a better material than gelatin for applications in biological environments.

Structural reinforcement and failure analysis in composite nanofibers of graphene oxide and gelatin

BOSIA, Federico;BRELY, Lucas Leo;
2014-01-01

Abstract

In this work we study the mechanical properties and failure mechanism of nano-composites of graphene oxide sheets embedded in polymeric systems, namely films and electro-spun nanofibers. In this last system, contrary to conventional bulk composites, the size of the nano-reinforcement (GO sheets) is comparable to the size of the nanofibers to be reinforced (≈ 200 nm). As polymeric matrix we use gelatin. We demonstrate that the high chemical affinity of the two materials hinders the renaturation of gelatin into collagen and causes a nearly ideal mixing in the GO–gelatin composite. Adding just 1% of GO (wt of GO with respect to gelatin ) we obtain an increase of Young’s modulus >50% and an increase of fracture stress >60%. We use numerical simulations to study the failure mechanism of the fibers. Calculations well agree with experimental data and show that, even if cracks start at GO sheet edges due to stress concentrations, crack propagation is hindered by the nonlinear behaviour of the matrix. Moreover, the presence of the GO sheets in continuous gelatin films improves the material stability to phosphate buffer solutions from 2 days to 2 weeks, making it a better material than gelatin for applications in biological environments.
2014
78
566
577
http://www.sciencedirect.com/science/article/pii/S0008622314006782#
Silvia Panzavolta;Barbara Bracci;Chiara Gualandi;Maria Letizia Focarete;Emanuele Treossi;Konstantinos Kouroupis-Agalou;Katia Rubini;Federico Bosia;Lucas Brely;Nicola M. Pugno;Vincenzo Palermo;Adriana Bigi
File in questo prodotto:
File Dimensione Formato  
postprint.pdf

Open Access dal 22/07/2016

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri
2014_Panzavolta_Carbon.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 2.81 MB
Formato Adobe PDF
2.81 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/148121
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 79
  • ???jsp.display-item.citation.isi??? 78
social impact