There are currently no approved targeted therapies for advanced KRAS mutant (KRASMT) colorectal cancer (CRC). Using a unique systems biology approach, we identified JAK1/2-dependent activation of STAT3 as the key mediator of resistance to MEK inhibitors in KRASMT CRC in vitro and in vivo. Further analyses identified acute increases in c-MET activity following treatment with MEK inhibitors in KRASMT CRC models, which was demonstrated to promote JAK1/2-STAT3-mediated resistance. Furthermore, activation of c-MET following MEK inhibition was found to be due to inhibition of the ERK-dependent metalloprotease ADAM17, which normally inhibits c-MET signaling by promoting shedding of its endogenous antagonist, soluble "decoy" MET. Most importantly, pharmacological blockade of this resistance pathway with either c-MET or JAK1/2 inhibitors synergistically increased MEK-inhibitor-induced apoptosis and growth inhibition in vitro and in vivo in KRASMT models, providing clear rationales for the clinical assessment of these combinations in KRASMT CRC patients.

ADAM17-dependent c-MET-STAT3 signaling mediates resistance to MEK inhibitors in KRAS mutant colorectal cancer.

MICHIELI, Paolo;
2014-01-01

Abstract

There are currently no approved targeted therapies for advanced KRAS mutant (KRASMT) colorectal cancer (CRC). Using a unique systems biology approach, we identified JAK1/2-dependent activation of STAT3 as the key mediator of resistance to MEK inhibitors in KRASMT CRC in vitro and in vivo. Further analyses identified acute increases in c-MET activity following treatment with MEK inhibitors in KRASMT CRC models, which was demonstrated to promote JAK1/2-STAT3-mediated resistance. Furthermore, activation of c-MET following MEK inhibition was found to be due to inhibition of the ERK-dependent metalloprotease ADAM17, which normally inhibits c-MET signaling by promoting shedding of its endogenous antagonist, soluble "decoy" MET. Most importantly, pharmacological blockade of this resistance pathway with either c-MET or JAK1/2 inhibitors synergistically increased MEK-inhibitor-induced apoptosis and growth inhibition in vitro and in vivo in KRASMT models, providing clear rationales for the clinical assessment of these combinations in KRASMT CRC patients.
2014
7
1940
1955
http://www.sciencedirect.com/science/article/pii/S2211124714004264
Van Schaeybroeck S;Kalimutho M;Dunne PD;Carson R;Allen W;Jithesh PV;Redmond KL;Sasazuki T;Shirasawa S;Blayney J;Michieli P;Fenning C;Lenz HJ;Lawler M;...espandi
File in questo prodotto:
File Dimensione Formato  
34_Shaeybroeck et al_Cell Reports 2014.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 5.02 MB
Formato Adobe PDF
5.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/149415
Citazioni
  • ???jsp.display-item.citation.pmc??? 59
  • Scopus 86
  • ???jsp.display-item.citation.isi??? 88
social impact