Parecoxib (PX) is an injectable prodrug of valdecoxib (VX, which is a selective cyclo-oxyganase-2 (COX-2)) inhibitor licensed for humans. The aim of the present study was to evaluate pharmacokinetics and in vitro/ex vivo cyclooxygenase selectivity of PX and VX in cats. In a whole blood in vitro study, PX did not affect either COX enzymes whereas VX revealed a COX-2 selective inhibitory effect in feline whole blood. The IC50 values of VX for COX-2 and COX-1 were 0.45 and 38.6 µM, respectively. Six male cats were treated with 2.5 mg/kg of PX by intramuscular injection. PX was rapidly converted to VX with a relatively short half-life of 0.4 h. VX achieved peak plasma concentration (2.79 ± 1.59 µg/mL) at 7 h following PX injection. The mean residence times for PX and VX were 0.43 ± 0.15 and 5.94 ± 0.88 h, respectively. In the ex vivo study, PX showed a COX-2 inhibition rate of about 70% in samples taken at 1, 2, 4 and 10 h after injection, with a significant difference compared to the control. In contrast, COX-1 was slightly inhibited, ranging from 0.7% to 9.7% of the control inhibition rate without any significant difference for 24 h after PX administration. The preliminary findings of the present research appear promising and encourage further studies to investigate whether PX can be successfully used in feline medicine.
The pharmacokinetics and in vitro/ex vivo cyclooxygenase selectivity of parecoxib and its active metabolite valdecoxib in cats
VERCELLI, CRISTINA;RE, Giovanni;
2014-01-01
Abstract
Parecoxib (PX) is an injectable prodrug of valdecoxib (VX, which is a selective cyclo-oxyganase-2 (COX-2)) inhibitor licensed for humans. The aim of the present study was to evaluate pharmacokinetics and in vitro/ex vivo cyclooxygenase selectivity of PX and VX in cats. In a whole blood in vitro study, PX did not affect either COX enzymes whereas VX revealed a COX-2 selective inhibitory effect in feline whole blood. The IC50 values of VX for COX-2 and COX-1 were 0.45 and 38.6 µM, respectively. Six male cats were treated with 2.5 mg/kg of PX by intramuscular injection. PX was rapidly converted to VX with a relatively short half-life of 0.4 h. VX achieved peak plasma concentration (2.79 ± 1.59 µg/mL) at 7 h following PX injection. The mean residence times for PX and VX were 0.43 ± 0.15 and 5.94 ± 0.88 h, respectively. In the ex vivo study, PX showed a COX-2 inhibition rate of about 70% in samples taken at 1, 2, 4 and 10 h after injection, with a significant difference compared to the control. In contrast, COX-1 was slightly inhibited, ranging from 0.7% to 9.7% of the control inhibition rate without any significant difference for 24 h after PX administration. The preliminary findings of the present research appear promising and encourage further studies to investigate whether PX can be successfully used in feline medicine.File | Dimensione | Formato | |
---|---|---|---|
Kim TV et al. 2014.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
379.34 kB
Formato
Adobe PDF
|
379.34 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Kim TV et al. 2014_OA.pdf
Open Access dal 31/10/2015
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
393.38 kB
Formato
Adobe PDF
|
393.38 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.