In this paper we analyze time-frequency representations in the Cohen class, i.e., quadratic forms expressed as a convolution between the classical Wigner transform and a kernel, with respect to uncertainty principles of local type. More precisely the results we obtain concerning the energy distribution of these representations show that a "too large" amount of energy cannot be concentrated in a "too small" set of the time-frequency plane. In particular, for a signal $f\in L^2(\Rd)$, the energy of a time-frequency representation contained in a measurable set $M$ must be controlled by the standard deviations of $\vert f\vert^2$ and $\vert \hat{f}\vert^2$, and by suitable quantities measuring the size of $M$.

Local uncertainty principles for the Cohen class

BOGGIATTO, Paolo;CARYPIS, EVANTHIA;OLIARO, Alessandro
2014-01-01

Abstract

In this paper we analyze time-frequency representations in the Cohen class, i.e., quadratic forms expressed as a convolution between the classical Wigner transform and a kernel, with respect to uncertainty principles of local type. More precisely the results we obtain concerning the energy distribution of these representations show that a "too large" amount of energy cannot be concentrated in a "too small" set of the time-frequency plane. In particular, for a signal $f\in L^2(\Rd)$, the energy of a time-frequency representation contained in a measurable set $M$ must be controlled by the standard deviations of $\vert f\vert^2$ and $\vert \hat{f}\vert^2$, and by suitable quantities measuring the size of $M$.
2014
419
2
1004
1022
http://www.sciencedirect.com/science/article/pii/S0022247X14004363
Time-Frequency representations, Wigner sesquilinear and quadratic form, local uncertainty principles.
P. Boggiatto; E. Carypis; A. Oliaro
File in questo prodotto:
File Dimensione Formato  
Boggiatto Carypis Oliaro.pdf

Open Access dal 04/06/2019

Descrizione: Postprint con copertina
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 326.14 kB
Formato Adobe PDF
326.14 kB Adobe PDF Visualizza/Apri
Articolo pubblicato (spedito da JMAA).pdf

Accesso riservato

Descrizione: Articolo
Tipo di file: PDF EDITORIALE
Dimensione 714.81 kB
Formato Adobe PDF
714.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/149791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 10
social impact