Vascular endothelial cells (ECs) and several cancer cells express B7h, which is the ligand of the ICOS T cell costimulatory molecule. We have previously shown that B7h triggering via a soluble form of ICOS (ICOS-Fc) inhibits the adhesion of polymorphonuclear and tumor cell lines to HUVECs; thus, we suggested that ICOS-Fc may act as an anti-inflammatory and antitumor agent. Because cancer cell migration and angiogenesis are crucial for metastasis dissemination, the aim of this work was to evaluate the effect of ICOS-Fc on the migration of cancer cells and ECs. ICOS-Fc specifically inhibited the migration of HUVECs, human dermal lymphatic ECs, and the HT29, HCT116, PC-3, HepG2, JR8, and M14 tumor cell lines expressing high levels of B7h, whereas it was ineffective in the RPMI7932, PCF-2, LM, and BHT-101 cell lines expressing low levels of B7h. Furthermore, ICOS-Fc downmodulated hepatocyte growth factor facilitated the epithelial-to-mesenchymal transition in HepG2 cells. Moreover, ICOS-Fc downmodulated the phosphorylation of focal adhesion kinase and the expression of β-Pix in both HUVECs and tumor cell lines. Finally, treatment with ICOS-Fc inhibited the development of lung metastases upon injection of NOD-SCID-IL2Rγnull mice with CF-PAC1 cells, as well as C57BL/6 mice with B16-F10 cells. Therefore, the B7h−ICOS interaction may modulate the spread of cancer metastases, which suggests the novel use of ICOS-Fc as an immunomodulatory drug. However, in the B16-F10–metastasized lungs, ICOS-Fc also increased IL-17A/RORc and decreased IL-10/Foxp3 expression, which indicates that it also exerts positive effects on the antitumor immune response
B7h triggering inhibits the migration of tumor cell lines.
DIANZANI, Chiara;MINELLI, ROSALBA;OCCHIPINTI, SERGIO;GIOVARELLI, Mirella;CONTI, Laura;FANTOZZI, Roberto;
2014-01-01
Abstract
Vascular endothelial cells (ECs) and several cancer cells express B7h, which is the ligand of the ICOS T cell costimulatory molecule. We have previously shown that B7h triggering via a soluble form of ICOS (ICOS-Fc) inhibits the adhesion of polymorphonuclear and tumor cell lines to HUVECs; thus, we suggested that ICOS-Fc may act as an anti-inflammatory and antitumor agent. Because cancer cell migration and angiogenesis are crucial for metastasis dissemination, the aim of this work was to evaluate the effect of ICOS-Fc on the migration of cancer cells and ECs. ICOS-Fc specifically inhibited the migration of HUVECs, human dermal lymphatic ECs, and the HT29, HCT116, PC-3, HepG2, JR8, and M14 tumor cell lines expressing high levels of B7h, whereas it was ineffective in the RPMI7932, PCF-2, LM, and BHT-101 cell lines expressing low levels of B7h. Furthermore, ICOS-Fc downmodulated hepatocyte growth factor facilitated the epithelial-to-mesenchymal transition in HepG2 cells. Moreover, ICOS-Fc downmodulated the phosphorylation of focal adhesion kinase and the expression of β-Pix in both HUVECs and tumor cell lines. Finally, treatment with ICOS-Fc inhibited the development of lung metastases upon injection of NOD-SCID-IL2Rγnull mice with CF-PAC1 cells, as well as C57BL/6 mice with B16-F10 cells. Therefore, the B7h−ICOS interaction may modulate the spread of cancer metastases, which suggests the novel use of ICOS-Fc as an immunomodulatory drug. However, in the B16-F10–metastasized lungs, ICOS-Fc also increased IL-17A/RORc and decreased IL-10/Foxp3 expression, which indicates that it also exerts positive effects on the antitumor immune responseI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.