Martensen splines Mf of degree n interpolate f and its derivatives up to the order n−1 at a subset of the knots of the spline space, have local support and exactly reproduce both polynomials and splines of degree ≤n. An approximation error estimate has been provided for f∈Cn+1. This paper aims to clarify how well the Martensen splines Mf approximate smooth functions on compact intervals. Assuming that f∈Cn−1, approximation error estimates are provided for Djf,j=0,1,…,n−1, where Dj is the jth derivative operator. Moreover, a set of sufficient conditions on the sequence of meshes are derived for the uniform convergence of DjMf to Djf, for j=0,1,…,n−1.

Smoothness and error bounds of Martensen splines

DEMICHELIS, Vittoria;
2015-01-01

Abstract

Martensen splines Mf of degree n interpolate f and its derivatives up to the order n−1 at a subset of the knots of the spline space, have local support and exactly reproduce both polynomials and splines of degree ≤n. An approximation error estimate has been provided for f∈Cn+1. This paper aims to clarify how well the Martensen splines Mf approximate smooth functions on compact intervals. Assuming that f∈Cn−1, approximation error estimates are provided for Djf,j=0,1,…,n−1, where Dj is the jth derivative operator. Moreover, a set of sufficient conditions on the sequence of meshes are derived for the uniform convergence of DjMf to Djf, for j=0,1,…,n−1.
2015
278
90
100
Hermite interpolation; Polynomial spline
V. Demichelis; M. Sciarra
File in questo prodotto:
File Dimensione Formato  
jcamvm_OA.pdf

Open Access dal 01/01/2017

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 218.23 kB
Formato Adobe PDF
218.23 kB Adobe PDF Visualizza/Apri
Demichelis_Smoothness.pdf

Accesso riservato

Descrizione: Articolo pubblicato
Tipo di file: PDF EDITORIALE
Dimensione 4.82 MB
Formato Adobe PDF
4.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/149973
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact