We investigate the R-boundedness of operator families belonging to the Boutet de Monvel calculus. In particular, we show that weakly and strongly parameter-dependent Green operators of nonpositive order are R-bounded. Such operators appear as resolvents of non-local (pseudodifferential) boundary value problems. As a consequence, we obtain maximal L_p-regularity for such boundary value problems. An example is given by the reduced Stokes equation in waveguides.
Titolo: | Maximal L_p-regularity of non-local boundary value problems |
Autori Riconosciuti: | |
Autori: | R. Denk; J. Seiler |
Data di pubblicazione: | 2015 |
Abstract: | We investigate the R-boundedness of operator families belonging to the Boutet de Monvel calculus. In particular, we show that weakly and strongly parameter-dependent Green operators of nonpositive order are R-bounded. Such operators appear as resolvents of non-local (pseudodifferential) boundary value problems. As a consequence, we obtain maximal L_p-regularity for such boundary value problems. An example is given by the reduced Stokes equation in waveguides. |
Volume: | 176 |
Fascicolo: | 1 |
Pagina iniziale: | 53 |
Pagina finale: | 80 |
Digital Object Identifier (DOI): | 10.1007/s00605-014-0669-4 |
URL: | http://arxiv.org/pdf/1407.2547v1.pdf |
Parole Chiave: | R-boundedness; maximal regularity; Waveguides; pseudodifferential operators; Boundary value problems |
Rivista: | MONATSHEFTE FÜR MATHEMATIK |
Appare nelle tipologie: | 03A-Articolo su Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
mh_originale.pdf | originale | PDF EDITORIALE | Utenti riconosciuti Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.