We review some constructions and properties of complex manifolds admitting pluriclosed and balanced metrics. We prove that for a 6-dimensional solvmanifold endowed with an invariant complex structure J having holomorphically trivial canonical bundle the pluriclosed flow has a long time solution for every invariant initial datum. Moreover, we state a new conjecture about the existence of balanced and SKT metrics on compact complex manifolds. We show that the conjecture is true for nilmanifolds of dimension 6 and 8 and for 6-dimensional solvmanifolds with holomorphically trivial canonical bundle.
Special Hermitian metrics on compact solvmanifolds
FINO, Anna Maria;VEZZONI, Luigi
2015-01-01
Abstract
We review some constructions and properties of complex manifolds admitting pluriclosed and balanced metrics. We prove that for a 6-dimensional solvmanifold endowed with an invariant complex structure J having holomorphically trivial canonical bundle the pluriclosed flow has a long time solution for every invariant initial datum. Moreover, we state a new conjecture about the existence of balanced and SKT metrics on compact complex manifolds. We show that the conjecture is true for nilmanifolds of dimension 6 and 8 and for 6-dimensional solvmanifolds with holomorphically trivial canonical bundle.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.