We prove the existence of three positive solutions for the Neumann problem associated to $u'' + a(t)u^{\gamma+1} = 0$, assuming that $a(t)$ has two positive humps and $\int_0^T a^-(t)\, dt$ is large enough. Actually, the result holds true for a more general class of superlinear nonlinearities.

A note on a superlinear indefinite Neumann problem with multiple positive solutions

BOSCAGGIN, Alberto
2011-01-01

Abstract

We prove the existence of three positive solutions for the Neumann problem associated to $u'' + a(t)u^{\gamma+1} = 0$, assuming that $a(t)$ has two positive humps and $\int_0^T a^-(t)\, dt$ is large enough. Actually, the result holds true for a more general class of superlinear nonlinearities.
2011
377
1
259
268
http://www.sciencedirect.com/science/article/pii/S0022247X10008796
Indefinite weight; Positive solutions; Shooting method
BOSCAGGIN A
File in questo prodotto:
File Dimensione Formato  
11JMAA.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 246.56 kB
Formato Adobe PDF
246.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/151182
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 26
social impact