Recently inductive databases (IDBs) have been proposed to afford the problem of knowledge discovery from huge databases. With an IDB the user/analyst performs a set of very different operations on data using a special-purpose language, powerful enough to perform all the required manipulations, such as data preprocessing, pattern discovery and pattern post-processing. In this paper we present a comparison between query languages (MSQL, DMQL and MINE RULE) that have been proposed for association rules extraction in the last years and discuss their common features and differences. We present them using a set of examples, taken from the real practice of data mining. This allows us to define the language design guidelines, with particular attention to the open issues on IDBs.
A Comparison between Query Languages for the Extraction of Association Rules
BOTTA, Marco;MEO, Rosa
2002-01-01
Abstract
Recently inductive databases (IDBs) have been proposed to afford the problem of knowledge discovery from huge databases. With an IDB the user/analyst performs a set of very different operations on data using a special-purpose language, powerful enough to perform all the required manipulations, such as data preprocessing, pattern discovery and pattern post-processing. In this paper we present a comparison between query languages (MSQL, DMQL and MINE RULE) that have been proposed for association rules extraction in the last years and discuss their common features and differences. We present them using a set of examples, taken from the real practice of data mining. This allows us to define the language design guidelines, with particular attention to the open issues on IDBs.File | Dimensione | Formato | |
---|---|---|---|
dawak02.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
134.25 kB
Formato
Adobe PDF
|
134.25 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.