We show that a temperate distribution belongs to an ordered intersection or union of admissible Banach or Frechét spaces if and only if the corresponding global wave-front set of union or intersection type is empty. We also discuss the situation where intersections and unions of sequences of spaces with two indeces are involved. A main situation where the present theory applies is given by sequences of weighted, general modulation spaces.

Global wave-front sets of intersection and union type

CORIASCO, Sandro;
2014-01-01

Abstract

We show that a temperate distribution belongs to an ordered intersection or union of admissible Banach or Frechét spaces if and only if the corresponding global wave-front set of union or intersection type is empty. We also discuss the situation where intersections and unions of sequences of spaces with two indeces are involved. A main situation where the present theory applies is given by sequences of weighted, general modulation spaces.
2014
Fourier Analysis
Birkhäuser (Springer)
Trends in Mathematics
91
106
S. Coriasco; K. Johansson; J. Toft
File in questo prodotto:
File Dimensione Formato  
CJT14.pdf

Open Access dal 01/01/2016

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 850.72 kB
Formato Adobe PDF
850.72 kB Adobe PDF Visualizza/Apri
CJT_IntGWFS.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 851.14 kB
Formato Adobe PDF
851.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/151599
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact