We show that a temperate distribution belongs to an ordered intersection or union of admissible Banach or Frechét spaces if and only if the corresponding global wave-front set of union or intersection type is empty. We also discuss the situation where intersections and unions of sequences of spaces with two indeces are involved. A main situation where the present theory applies is given by sequences of weighted, general modulation spaces.
Global wave-front sets of intersection and union type
CORIASCO, Sandro;
2014-01-01
Abstract
We show that a temperate distribution belongs to an ordered intersection or union of admissible Banach or Frechét spaces if and only if the corresponding global wave-front set of union or intersection type is empty. We also discuss the situation where intersections and unions of sequences of spaces with two indeces are involved. A main situation where the present theory applies is given by sequences of weighted, general modulation spaces.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CJT14.pdf
Open Access dal 01/01/2016
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
850.72 kB
Formato
Adobe PDF
|
850.72 kB | Adobe PDF | Visualizza/Apri |
CJT_IntGWFS.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
851.14 kB
Formato
Adobe PDF
|
851.14 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.