We illustrate the composition properties for an extended family of SG Fourier integral operators. We prove continuity results on modulation spaces, and study mapping properties of global wave-front sets for such operators. These extend classical results to more general situations. For example, there are no requirements on homogeneity for the phase functions. Finally, we apply our results to the study of the propagation of singularities, in the context of modulation spaces, for the solutions to the Cauchy problems for the corresponding linear hyperbolic operators.
Global wave-front properties for Fourier integral operators and hyperbolic problems
CORIASCO, Sandro;
2016-01-01
Abstract
We illustrate the composition properties for an extended family of SG Fourier integral operators. We prove continuity results on modulation spaces, and study mapping properties of global wave-front sets for such operators. These extend classical results to more general situations. For example, there are no requirements on homogeneity for the phase functions. Finally, we apply our results to the study of the propagation of singularities, in the context of modulation spaces, for the solutions to the Cauchy problems for the corresponding linear hyperbolic operators.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CJT_GlobalWFSFIO.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
2.03 MB
Formato
Adobe PDF
|
2.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
CJT16.pdf
Open Access dal 03/07/2016
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Visualizza/Apri |
Coriasco2016_Article_GlobalWave-FrontPropertiesForF.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
999 kB
Formato
Adobe PDF
|
999 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.