We consider the Euler equations on $\mathbb{T}^d$ with analytic data and prove lower bounds for the radius of spatial analyticity $\epsilon(t)$ of the solution using a new method based on inductive estimates in standard Sobolev spaces. Our results are consistent with similar previous results proved by Kukavica and Vicol, but give a more precise dependence of $\epsilon(t)$ on the radius of analyticity of the initial datum.
Some remarks on the radius of spatial analyticity for the Euler equations
CAPPIELLO, Marco;
2015-01-01
Abstract
We consider the Euler equations on $\mathbb{T}^d$ with analytic data and prove lower bounds for the radius of spatial analyticity $\epsilon(t)$ of the solution using a new method based on inductive estimates in standard Sobolev spaces. Our results are consistent with similar previous results proved by Kukavica and Vicol, but give a more precise dependence of $\epsilon(t)$ on the radius of analyticity of the initial datum.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ASY1260.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
125.68 kB
Formato
Adobe PDF
|
125.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
CappielloNicola-2.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
170.18 kB
Formato
Adobe PDF
|
170.18 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.