We prove Lp -parabolic a-priori estimates for ət u + ∑di,j=1 cij(t)ə2x i x j u = f on Rd+1 when the coefficients cij are locally bounded functions on R. We slightly generalize the usual parabolicity assumption and show that still Lp -estimates hold for the second spatial derivatives of u. We also investigate the dependence of the constant appearing in such estimates from the parabolicity constant. The proof requires the use of the stochastic integral when p is different from 2. Finally we extend our estimates to parabolic equations involving non-degenerate Ornstein-Uhlenbeck type operators.

L p-parabolic regularity and non-degenerate Ornstein-Uhlenbeck type operators

PRIOLA, Enrico
First
2015-01-01

Abstract

We prove Lp -parabolic a-priori estimates for ət u + ∑di,j=1 cij(t)ə2x i x j u = f on Rd+1 when the coefficients cij are locally bounded functions on R. We slightly generalize the usual parabolicity assumption and show that still Lp -estimates hold for the second spatial derivatives of u. We also investigate the dependence of the constant appearing in such estimates from the parabolicity constant. The proof requires the use of the stochastic integral when p is different from 2. Finally we extend our estimates to parabolic equations involving non-degenerate Ornstein-Uhlenbeck type operators.
2015
Geometric Methods in PDE’s
Springer International Publishing
Springer INdAM Series
13
121
139
978-3-319-02665-7
http://arxiv.org/abs/1405.5061
A-priori L; p; -estimates; Ornstein-Uhlenbeck operators; Parabolic equations;
Priola, Enrico
File in questo prodotto:
File Dimensione Formato  
Lp-parabolic.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 128.7 kB
Formato Adobe PDF
128.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1521093
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact