We prove Lp -parabolic a-priori estimates for ət u + ∑di,j=1 cij(t)ə2x i x j u = f on Rd+1 when the coefficients cij are locally bounded functions on R. We slightly generalize the usual parabolicity assumption and show that still Lp -estimates hold for the second spatial derivatives of u. We also investigate the dependence of the constant appearing in such estimates from the parabolicity constant. The proof requires the use of the stochastic integral when p is different from 2. Finally we extend our estimates to parabolic equations involving non-degenerate Ornstein-Uhlenbeck type operators.
L p-parabolic regularity and non-degenerate Ornstein-Uhlenbeck type operators
PRIOLA, EnricoFirst
2015-01-01
Abstract
We prove Lp -parabolic a-priori estimates for ət u + ∑di,j=1 cij(t)ə2x i x j u = f on Rd+1 when the coefficients cij are locally bounded functions on R. We slightly generalize the usual parabolicity assumption and show that still Lp -estimates hold for the second spatial derivatives of u. We also investigate the dependence of the constant appearing in such estimates from the parabolicity constant. The proof requires the use of the stochastic integral when p is different from 2. Finally we extend our estimates to parabolic equations involving non-degenerate Ornstein-Uhlenbeck type operators.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Lp-parabolic.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
128.7 kB
Formato
Adobe PDF
|
128.7 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.