This paper proposes to exploit author-defined tags and social interaction data (commenting and sharing news items) in news recommendation. Moreover it presents a hybrid news recommender which suggest news items on the basis of the reader's short and long-term reading history, taking reading trends and short-term interests into account. The experimental results we carried out provided encouraging results about the accuracy of the recommendations.

News Recommender Based on Rich Feedback

ARDISSONO, Liliana;PETRONE, GIOVANNA;
2015-01-01

Abstract

This paper proposes to exploit author-defined tags and social interaction data (commenting and sharing news items) in news recommendation. Moreover it presents a hybrid news recommender which suggest news items on the basis of the reader's short and long-term reading history, taking reading trends and short-term interests into account. The experimental results we carried out provided encouraging results about the accuracy of the recommendations.
2015
23rd Conf. on User Modeling, Personalization and Adaptation (UMAP 2015)
Dublino
July 1-03, 2015
User Modeling, Adaptation and Personalization - 23rd International Conference, UMAP 2015 Dublin, Ireland, June 29 – July 3, 2015 Proceedings
Springer
9146
331
336
978-3-319-20266-2
978-3-319-20267-9
http://link.springer.com/chapter/10.1007/978-3-319-20267-9_27
Hybrid news recommender, tag-based news specification
Ardissono, Liliana; Giovanna, Petrone; Francesco, Vigliaturo
File in questo prodotto:
File Dimensione Formato  
umap2015-proceedings-Ardissono.pdf

Accesso riservato

Descrizione: PDF editoriale
Tipo di file: PDF EDITORIALE
Dimensione 90.88 kB
Formato Adobe PDF
90.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
umap2015-per-www.pdf

Accesso aperto

Descrizione: Articolo principale
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 170.29 kB
Formato Adobe PDF
170.29 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1521614
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact