This paper proposes to exploit author-defined tags and social interaction data (commenting and sharing news items) in news recommendation. Moreover it presents a hybrid news recommender which suggest news items on the basis of the reader's short and long-term reading history, taking reading trends and short-term interests into account. The experimental results we carried out provided encouraging results about the accuracy of the recommendations.
News Recommender Based on Rich Feedback
ARDISSONO, Liliana;PETRONE, GIOVANNA;
2015-01-01
Abstract
This paper proposes to exploit author-defined tags and social interaction data (commenting and sharing news items) in news recommendation. Moreover it presents a hybrid news recommender which suggest news items on the basis of the reader's short and long-term reading history, taking reading trends and short-term interests into account. The experimental results we carried out provided encouraging results about the accuracy of the recommendations.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
umap2015-proceedings-Ardissono.pdf
Accesso riservato
Descrizione: PDF editoriale
Tipo di file:
PDF EDITORIALE
Dimensione
90.88 kB
Formato
Adobe PDF
|
90.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
umap2015-per-www.pdf
Accesso aperto
Descrizione: Articolo principale
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
170.29 kB
Formato
Adobe PDF
|
170.29 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.