In this paper, a highly effective parallel filter for visual data restoration is presented. The filter is designed following a skeletal approach, using a newly proposed stencil-reduce, and has been implemented by way of the FastFlow parallel programming library. As a result of its high-level design, it is possible to run the filter seamlessly on a multicore machine, on multi-GPGPUs, or on both. The design and implementation of the filter are discussed, and an experimental evaluation is presented.

Parallel Visual Data Restoration on Multi-GPGPUs using Stencil-Reduce Pattern

ALDINUCCI, MARCO;PERETTI PEZZI, GUILHERME;DROCCO, MAURIZIO;
2015-01-01

Abstract

In this paper, a highly effective parallel filter for visual data restoration is presented. The filter is designed following a skeletal approach, using a newly proposed stencil-reduce, and has been implemented by way of the FastFlow parallel programming library. As a result of its high-level design, it is possible to run the filter seamlessly on a multicore machine, on multi-GPGPUs, or on both. The design and implementation of the filter are discussed, and an experimental evaluation is presented.
2015
1
12
http://dx.doi.org/10.1177/1094342014567907
Impulsive noise, Gaussian noise, image restoration, image filtering, GPGPUs, parallel patterns, skeletons, structured parallel programming, iterative stencil, stencil-reduce, MapReduce
Aldinucci, Marco; Peretti Pezzi, Guilherme; Drocco, Maurizio; Spampinato, Concetto; Torquati, Massimo
File in questo prodotto:
File Dimensione Formato  
ijhpca_4aperto.pdf

Accesso aperto

Descrizione: Post-print
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri
2015_IJHPCA-stencil-reduce.pdf

Accesso riservato

Descrizione: editoriale
Tipo di file: PDF EDITORIALE
Dimensione 2.64 MB
Formato Adobe PDF
2.64 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1522073
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact