Dipolar crystal faces, although reconstructed, have a high surface energy and are forbidden in a Wulff plot at 0 K, in a vacuum. However, they do grow far from equilibrium and due to the relatively open surface structure, are eligible for adsorption, epitaxy and incorporation of foreign substances. In this paper, we study the surface structure of the (111) dipolar face of LiF and calculate the thermal contribution to the surface energy, in the harmonic limit at the Hartree–Fock level. The surface energy calculated at 0 K, of the Li and F terminated (111) faces are 0.767 and 0.698 J/m2, respectively. When the vibrational energy and entropy are considered the surface energies at 298.15 K decrease to 0.720 (Li terminated) and 0.670 (F terminated) J/m2. Finally, when the configurational entropy is also taken into account, the surface energies are 0.663 (Li terminated) and 0.612 (F terminated) J/m2.

Thermodynamic study of reconstructed crystal surfaces.: The octopolar (111) face of LiF crystals

RUBBO, Marco;BRUNO, Marco;PRENCIPE, Mauro
2015-01-01

Abstract

Dipolar crystal faces, although reconstructed, have a high surface energy and are forbidden in a Wulff plot at 0 K, in a vacuum. However, they do grow far from equilibrium and due to the relatively open surface structure, are eligible for adsorption, epitaxy and incorporation of foreign substances. In this paper, we study the surface structure of the (111) dipolar face of LiF and calculate the thermal contribution to the surface energy, in the harmonic limit at the Hartree–Fock level. The surface energy calculated at 0 K, of the Li and F terminated (111) faces are 0.767 and 0.698 J/m2, respectively. When the vibrational energy and entropy are considered the surface energies at 298.15 K decrease to 0.720 (Li terminated) and 0.670 (F terminated) J/m2. Finally, when the configurational entropy is also taken into account, the surface energies are 0.663 (Li terminated) and 0.612 (F terminated) J/m2.
2015
632
180
184
LiF, Surface relaxation, Vibration frequencies, Surface entropy and free energy
RUBBO M.; BRUNO M.; PRENCIPE M.
File in questo prodotto:
File Dimensione Formato  
Rubbo_et_al_2015_SS.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 752.29 kB
Formato Adobe PDF
752.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Rubbo_et_al_2015_SS_OA.pdf

Open Access dal 01/03/2016

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 399.11 kB
Formato Adobe PDF
399.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/152311
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact