Epithelial cells are shed into milk during lactation, and although they generally reflect the cellular characteristics of terminally differentiated luminal cells, previously the detection of more primitive cells was described in human milk where a cell population of epithelial lineage was detected expressing markers typical of progenitor cells. In this investigation, we report the development of flow cytometry analysis to allow multiparametric assessment of mammary epithelial cells observed in milk. Cells collected from milk samples of 10 healthy dairy cows were directly analyzed for 6 different markers: CD45, CD49f, cytokeratin 14, cytokeratin 18, presence of nucleus, and cell viability. Milk samples were collected in 3 different periods of lactation: early lactation (EL=d 0-30), mid-lactation (ML=d 90-120), and late lactation (LL=210-250). Here we identify the differential expression of precursor or differentiated cell markers (or both) in mammary epithelial cells present in bovine milk. Myoepithelial cells, as indicated by cells staining positively for cytokeratin 14(+)/cytokeratin 18(-), were observed to increase from EL to LL with a high correlation with nuclear staining inferring potential proliferative activity. Furthermore, a significant increase in CD49f(+) and cytokeratin 14(+)/cytokeratin 18(+) positive cells was observed in LL. This assay is a sensitive approach for evaluating the variations in the frequency and features of living epithelial cells, whose reciprocal balance may be significant in understanding mammary gland cellular function throughout lactation. These observations suggest that mammary epithelial cell immunophenotypes could be investigated as biomarkers for mammary gland function in dairy cows.

Differential expression of living mammary epithelial cell subpopulations in milk during lactation in dairy cows

BARATTA, Mario;VOLPE, MARIA GIUSEPPA;NUCERA, Daniele Michele;MARTIGNANI, EUGENIO
2015-01-01

Abstract

Epithelial cells are shed into milk during lactation, and although they generally reflect the cellular characteristics of terminally differentiated luminal cells, previously the detection of more primitive cells was described in human milk where a cell population of epithelial lineage was detected expressing markers typical of progenitor cells. In this investigation, we report the development of flow cytometry analysis to allow multiparametric assessment of mammary epithelial cells observed in milk. Cells collected from milk samples of 10 healthy dairy cows were directly analyzed for 6 different markers: CD45, CD49f, cytokeratin 14, cytokeratin 18, presence of nucleus, and cell viability. Milk samples were collected in 3 different periods of lactation: early lactation (EL=d 0-30), mid-lactation (ML=d 90-120), and late lactation (LL=210-250). Here we identify the differential expression of precursor or differentiated cell markers (or both) in mammary epithelial cells present in bovine milk. Myoepithelial cells, as indicated by cells staining positively for cytokeratin 14(+)/cytokeratin 18(-), were observed to increase from EL to LL with a high correlation with nuclear staining inferring potential proliferative activity. Furthermore, a significant increase in CD49f(+) and cytokeratin 14(+)/cytokeratin 18(+) positive cells was observed in LL. This assay is a sensitive approach for evaluating the variations in the frequency and features of living epithelial cells, whose reciprocal balance may be significant in understanding mammary gland cellular function throughout lactation. These observations suggest that mammary epithelial cell immunophenotypes could be investigated as biomarkers for mammary gland function in dairy cows.
2015
98
10
6897
6904
http://www.elsevier.com/wps/find/journaldescription.cws_home/721317/description#description
Bovine; Cell precursor; Epithelial cell; Milk; Animal Science and Zoology; Food Science; Genetics
Baratta, M; Volpe, M.G.; Nucera, D.; Gabai, G.; Guzzo, N.; Faustini, M.; Martignani, E.
File in questo prodotto:
File Dimensione Formato  
JDS2015 JDS editoriale.pdf

Accesso riservato

Descrizione: Articolo definitivo pubblicato
Tipo di file: PDF EDITORIALE
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Journal Dairy Science post print con copertina.pdf

Accesso aperto

Descrizione: Post-Print articolo
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 774.65 kB
Formato Adobe PDF
774.65 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1525490
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact