We present a genome-wide approach to map DNA double-strand breaks (DSBs) at nucleotide resolution by a method we termed BLESS (direct in situ breaks labeling, enrichment on streptavidin and next-generation sequencing). We validated and tested BLESS using human and mouse cells and different DSBs-inducing agents and sequencing platforms. BLESS was able to detect telomere ends, Sce endonuclease-induced DSBs and complex genome-wide DSB landscapes. As a proof of principle, we characterized the genomic landscape of sensitivity to replication stress in human cells, and we identified >2,000 nonuniformly distributed aphidicolin-sensitive regions (ASRs) overrepresented in genes and enriched in satellite repeats. ASRs were also enriched in regions rearranged in human cancers, with many cancer-associated genes exhibiting high sensitivity to replication stress. Our method is suitable for genome-wide mapping of DSBs in various cells and experimental conditions, with a specificity and resolution unachievable by current techniques.

Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing

CROSETTO, NICOLA;CHIARLE, Roberto;
2013-01-01

Abstract

We present a genome-wide approach to map DNA double-strand breaks (DSBs) at nucleotide resolution by a method we termed BLESS (direct in situ breaks labeling, enrichment on streptavidin and next-generation sequencing). We validated and tested BLESS using human and mouse cells and different DSBs-inducing agents and sequencing platforms. BLESS was able to detect telomere ends, Sce endonuclease-induced DSBs and complex genome-wide DSB landscapes. As a proof of principle, we characterized the genomic landscape of sensitivity to replication stress in human cells, and we identified >2,000 nonuniformly distributed aphidicolin-sensitive regions (ASRs) overrepresented in genes and enriched in satellite repeats. ASRs were also enriched in regions rearranged in human cancers, with many cancer-associated genes exhibiting high sensitivity to replication stress. Our method is suitable for genome-wide mapping of DSBs in various cells and experimental conditions, with a specificity and resolution unachievable by current techniques.
2013
10
4
361
365
Animals; Aphidicolin; Base Sequence; Cell Line, Tumor; Cloning, Molecular; DNA Replication; Fibroblasts; Genomics; Humans; Male; Mice; Mice, Inbred C57BL; Microsatellite Repeats; Nucleic Acid Amplification Techniques; Physical Chromosome Mapping; Sequence Analysis, DNA; Spleen; Testis; Virus Replication; DNA Breaks, Double-Stranded; Biotechnology; Molecular Biology; Biochemistry; Cell Biology
Crosetto, Nicola; Mitra, Abhishek; Silva, Maria Joao; Bienko, Magda; Dojer, Norbert; Wang, Qi; Karaca, Elif; Chiarle, Roberto; Skrzypczak, Magdalena; Ginalski, Krzysztof; Pasero, Philippe; Rowicka, Maga; Dikic, Ivan
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1530621
Citazioni
  • ???jsp.display-item.citation.pmc??? 176
  • Scopus 352
  • ???jsp.display-item.citation.isi??? 327
social impact