4-hydroxynonenal (HNE), a lipid peroxidation product, is a promising anti-neoplastic drug due to its remarkable anti-cancer activities. However, this possibility has not been explored, because the delivery of HNE is very challenging as a result of its low solubility and its poor stability. This study intentionally designed a new type of lipid nanocapsules specifically for HNE delivery. They consist of a medium chain triglyceride liquid oil core surrounded by a polymer shell. A β-cyclodextrin-poly(4-acryloylmorpholine) conjugate was selected as the shell component. HNE-loaded nanocapsules were about 350 nm in size with a negative surface charge. They were stable for two years when stored in suspensions at 4 degrees C. In vitro experiments showed that HNE was released from the nanocapsules at a considerable rate. Nanocapsule uptake into cells was evaluated using a fluorescent formulation that revealed rapid internalisation. Cytotoxicity studies demonstrated the safety of the formulation. Enhanced anti-tumoral activity against various cell lines, depending on increased HNE stability, was obtained by using HNE-loaded nanocapsules. In particular, we have demonstrated an increase in anti-proliferative, pro-apoptotic and differentiative activity in several tumour cell lines from different tissues. Moreover, we evaluated the effects of these new nanocapsules on a three-dimensional human reconstructed model of skin melanoma. Interestingly, the encouraging results obtained with topical administration on the epidermal surface could open new perspectives in melanoma treatments.

Improved Anti-Tumoral Therapeutic Efficacy of 4-Hydroxynonenal Incorporated in Novel Lipid Nanocapsules in 2D and 3D Models

PIZZIMENTI, Stefania
First
;
DAGA, MARTINA;CIAMPORCERO, ERIC STEFANO;TOALDO, Cristina;PETTAZZONI, PIERGIORGIO;OSELLA ABATE, Simona;NOVELLI, Mauro;MINELLI, ROSALBA;BISAZZA, AGNESE;GAMBA, Paola Francesca;TESTA, GABRIELLA;ULLIO, CHIARA;BERNENGO, Maria Grazia;FERRETTI, Carlo;DIANZANI, Chiara;BIASI, Fiorella;BARRERA, Giuseppina
Co-last
;
CAVALLI, Roberta
Last
2015

Abstract

4-hydroxynonenal (HNE), a lipid peroxidation product, is a promising anti-neoplastic drug due to its remarkable anti-cancer activities. However, this possibility has not been explored, because the delivery of HNE is very challenging as a result of its low solubility and its poor stability. This study intentionally designed a new type of lipid nanocapsules specifically for HNE delivery. They consist of a medium chain triglyceride liquid oil core surrounded by a polymer shell. A β-cyclodextrin-poly(4-acryloylmorpholine) conjugate was selected as the shell component. HNE-loaded nanocapsules were about 350 nm in size with a negative surface charge. They were stable for two years when stored in suspensions at 4 degrees C. In vitro experiments showed that HNE was released from the nanocapsules at a considerable rate. Nanocapsule uptake into cells was evaluated using a fluorescent formulation that revealed rapid internalisation. Cytotoxicity studies demonstrated the safety of the formulation. Enhanced anti-tumoral activity against various cell lines, depending on increased HNE stability, was obtained by using HNE-loaded nanocapsules. In particular, we have demonstrated an increase in anti-proliferative, pro-apoptotic and differentiative activity in several tumour cell lines from different tissues. Moreover, we evaluated the effects of these new nanocapsules on a three-dimensional human reconstructed model of skin melanoma. Interestingly, the encouraging results obtained with topical administration on the epidermal surface could open new perspectives in melanoma treatments.
11
12
2169
2185
4-hydroxynonenal (HNE), anti-cancer drug, melanoma, nanocapsules
Pizzimenti, Stefania; Daga, Martina; Ciamporcero, Eric; Toaldo, Cristina; Pettazzoni, Piergiorgio; Osella-Abate, Simona; Novelli, Mauro; Minelli, Rosalba; Bisazza, Agnese; Gamba, Paola; Testa, Gabriella; Ullio, Chiara; Ferruti, Paolo; Ranucci, Elisabetta; Bernengo, Maria Grazia; Ferretti, Carlo; Dianzani, Chiara; Biasi, Fiorella; Barrera, Giuseppina; Cavalli, Roberta
File in questo prodotto:
File Dimensione Formato  
Pizzimenti JBN 2015 4-Hydroxynonenal proof.pdf

Accesso riservato

Descrizione: Articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 951.84 kB
Formato Adobe PDF
951.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/1531525
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact